Groundwater Quality Assessment Report

Village Center East Hampton, Connecticut

June 2015

146 Hartford Road Manchester, Connecticut 06040

June 5, 2015 +

Ms. Carla Sylvester Chair; Brownfields Redevelopment Agency Town of East Hampton 20 East High Street East Hampton, CT 06424

RE:

Groundwater Quality Assessment Report

Village Center

East Hampton, Connecticut

Dear Ms. Sylvester:

We are pleased to submit the enclosed Groundwater Quality Assessment report for the above-referenced site. This report summarizes the details and results from the assessment activities conducted with the objective to provide a preliminary screening level assessment of the existing groundwater conditions of the unconsolidated deposits aquifer in the Village Center.

This assessment was conducted in accordance with Fuss & O'Neill's authorization dated December 12, 2014 and with the United States Environmental Protection Agency (US EPA) approved Site Specific Quality Assurance Project Plan (QAPP), dated January 2015.

Thank you for the opportunity to conduct this work. Please contact the undersigned if we can be of further assistance.

Sincerely,

Daniel R. Jahne, LEP

Associate

David F. Hurley, LEP

Vice President

t 860.646.2469 800.286.2469 f 860.533.5143

146 Hartford Road

Manchester, CT

06040

60.533.5143 Enclosure

www.fando.com

Connecticut

Massachusetts

Rhode Island

Table of Contents

Groundwater Quality Assessment Village Center, East Hampton, Connecticut

1	Intro	oduction	1
2	Site	Overview	1
	2.1	Site History	1
	2.2	Physical Description	
	2.3	Environmental Setting	
		2.3.1 Geology	
		2.3.2 Hydrogeology	
		2.3.3 Water Quality Classifications	
3	Regi	ulatory Framework	3
	3.1	Groundwater Protection Criteria	3
	3.2	Surface Water Protection Criteria	Δ
	3.3	Volatilization Criteria	Δ
	3.4	CT DPH Drinking Water Action Levels	4
4	Prev	vious Environmental Assessments/Investigations	4
5	Grou	undwater Quality Assessment Procedures	6
	5.1	Data Quality Objectives and Reasonable Confidence Protocols	6
	5.2	Constituents of Concern	<i>6</i>
	5.3	Monitoring Well Installation & Development	7
	5.4	Groundwater Sampling	8
	5.5	Monitoring Well Elevation Survey	9
	5.6	QA/QC Review and Data Usability	9
6	Grou	undwater Quality Assessment Results	10
	6.1	Groundwater Elevation	
	6.2	Groundwater Analytical Results	10
	6.3	Groundwater Results Comparisons	11
		6.3.1 13 Watrous Street	12
		6.3.2 103 Main Street	13
		6.3.3 Overall Groundwater Quality – Village Center	13
7	Con	clusions	13
Q	Limi	itations of Work Product	15

Table of Contents

Groundwater Quality Assessment Village Center, East Hampton, Connecticut

Figures		End of Text
Figure 1	Site Location Map	
Figure 2	Groundwater Contour Map (April 17, 2015)	
Figure 3	Groundwater VOC Concentration Map - 2005 vs 2015	
Figure 4	Groundwater PAH Concentration Map - 2005 vs 2015	
Tables		End of Text
Table 1	Monitoring Well Construction Details & GW Elevation Data	
Table 2	Monitoring Well Coordinates & Survey Data	
Table 3	Groundwater Analytical Results	

Appendices	End of Report
------------	---------------

Appendix A 1986 Hydrogeologic Investigation - Groundwater Contamination Map
Appendix B January 2015 QAPP – Village Center Parcel Location Map

Appendix C

Appendix D

2005 Figures & Data Summary Tables (Tighe & Bond)

Appendix D

Boring Logs and Monitoring Well Completion Reports

Appendix E Monitoring Well Field Data Sheets
Appendix F Data Validation Completeness Checklist

Appendix G Laboratory Analytical Reports

1 Introduction

Fuss & O'Neill, Inc. was retained by the Town of East Hampton (the Town) to conduct a Groundwater Quality Assessment in the vicinity of the Town's "Village Center". The Village Center consists of numerous parcels located along Main Street, Skinner Street, Summit Street, Walnut Avenue and Watrous Street in East Hampton, Connecticut (the Site). The primary objective of this Groundwater Quality Assessment was to provide a preliminary screening level assessment of the existing groundwater conditions of the unconsolidated deposits aquifer in the Village Center and to help identify if potential continuing source(s) of contamination to the unconsolidated deposits aquifer exist.

The Groundwater Quality Assessment was conducted in accordance with the Environmental Protection Agency (EPA)-approved, January 2015 Site Specific Quality Assurance Project Plan (QAPP) addendum and in general conformance with Connecticut Department of Energy and Environmental Protection (DEEP) Remediation Standard Regulations (DEEP, 1996, rev. 2013).

2 Site Overview

2.1 Site History

East Hampton's Village Center was originally established in the mid 1700's and grew rapidly in the 1800s as an industrial hub known nationally for the manufacturing of bells. The first bell factory was constructed in 1808 and up to thirty manufacturers were known to have built and run bell factories in the town during that time period. More recently, several of these former industrial buildings remain underutilized and in disrepair.

According to Town records, previously prepared Brownfields Assessment reports identified a total of 23 Brownfield parcels within the Village Center. As part of the Village Center Revitalization Assessment conducted in December 2006, eleven of these Brownfield parcels (including facilities along Summit Street, Main Street, Skinner Street, Walnut Avenue and Watrous Street) were identified as having a "high" environmental risk. These "high" risk parcels once operated as bell manufacturers, cotton and silk manufactures, automotive paint and repair facilities, toy manufacturers, dry cleaners and gas stations. Some of the environmental concerns associated with these operations included the historic use of volatile organic compounds (VOCs) during bell manufacturing and dry cleaning operations, the presence and potential releases from petroleum underground storage tanks, and the generation of varying quantities of hazardous waste.

The extensive history of industrial manufacturing operations within the Village Center, including at the above-referenced Brownfield properties, has led to probable contamination in the area. Most notably, in 1984, elevated VOC concentrations, above applicable state drinking water maximum contaminant levels, were identified in the public water supply well located at the Center School (7 Summit Street). The elevated concentrations of trichloroethylene (TCE) and tetrachloroethylene (PCE) detected within this public potable water supply well prompted the Town and State Health Departments to conduct additional sampling of public and private supply wells in the area. The subsequent water quality

sampling identified a widespread area of impacted groundwater within the bedrock aquifer in the area of Main Street and Summit Street within the Village Center.

2.2 Physical Description

The subject site, Village Center, is comprised of a mix of residential, commercial and industrial parcels located to the south of the Pocotopaug Lake in East Hampton, Connecticut (Middlesex County). These properties include addresses along Main Street, Skinner Street, Summit Street, Walnut Avenue and Watrous Street. A portion of two United States Geological Survey (USGS) topographic maps showing the subject site location is provided as *Figure 1*.

2.3 Environmental Setting

Village Center is generally located in a topographical valley, sloping downwards toward the Pocotopaug Creek which runs from Pocotopaug Lake through the middle of Village Center, eventually discharging to Pine Brook (a tributary of the Salmon River). Throughout the area's industrial past, the natural location of this creek was altered by several iterations of damming and fill activities.

The regional topography generally slopes moderately to steeply from approximately 450 feet above sea level to approximately 360 feet above sea level (USGS, 1987) towards the Village Center (*Figure 1*).

2.3.1 Geology

Surficial Geology

Surficial materials across the site are identified as thin till (DEEP, 2009). Monitoring well installation activities conducted as part of the groundwater quality assessment confirmed that the unconsolidated materials consisted of compact silt, and fine to coarse-grained sand.

Bedrock Geology

Bedrock beneath the majority of the Site area is mapped as Brimfield Schist, which is characterized as grey, rusty weathering, medium to coarse layered schist and gneiss (Rodgers, 1985). Bedrock was encountered at several locations during the monitoring well installation activities including at depths between approximately 6 to 7 feet below grade (fbg) in the northern portion of Village Center (along Summit Street and Watrous Street). This was consistent with the previous bedrock monitoring well logs indicating bedrock in this area was encountered at depths between 7 to 8 fbg.

2.3.2 Hydrogeology

Groundwater was encountered in the unconsolidated deposits at the Site at depths ranging from 3 to 10 feet below ground surface (FO-05 and FO-03, respectively) during well installation drilling activities.

Depth to groundwater as measured within the newly installed monitoring wells ranges from approximately 2.6 to 9.05 feet below grade. Groundwater elevations were calculated to determine groundwater flow direction and create a groundwater contour map, which is provided as *Figure 2* and is discussed in *Section 6.1*. Groundwater elevation data is provided on *Table 1*.

2.3.3 Water Quality Classifications

Groundwater Classification

The groundwater beneath the Site is classified by the DEEP as GA/GAA, which may be impaired. GA/GAA groundwater is presumed to be able to be used for existing private and potential public or private supplies of water suitable for drinking without treatment (DEEP, 2011); however it is recognized that the groundwater in the Site vicinity may be impaired and may not meet current standards.

Surface Water Classification

The nearest surface water body to the Site is the Pocotopaug Creek, which runs from Pocotopaug Lane through the middle of Village Center (*Figure 2*). The Pocotopaug Creek is classified by the DEEP as B, which designated uses of such inland surface waters are for recreational use, fish and wildlife habitat, agricultural and industrial supply and other legitimate uses including navigation (DEEP, 2011).

3 Regulatory Framework

Analytical results obtained from this assessment were reviewed and compared to the Connecticut Remediation Standard Regulations (RSRs) (Regulations of Connecticut State Agencies [RCSA] Section 22a-133k-1 through 3) numeric criteria. The Connecticut RSRs are the clean-up standards in the State of Connecticut and contain procedures to evaluate whether actions (e.g., remediation or institutional controls) will be required to address identified releases of hazardous substances for sites that are subject to formal compliance with the RSRs.

The analytical results from the groundwater sampling have been compared to the baseline numeric criteria specified in the Connecticut RSRs (Regulations of Connecticut State Agencies Sections 22a-133k-1 through -3; adopted January 30, 1996, amended June 2013) and the CT drinking water Action Levels (CT Department of Public Health [DPH]) to provide a general environmental benchmark. Based on the previously discussed groundwater classification at the site, the analytical results are compared to the following criteria.

3.1 Groundwater Protection Criteria

Groundwater in a GA area may be remediated to a concentration equal to or less than the groundwater protection criteria (GWPC) for each substance if:

the background concentration for groundwater is equal to or less than such GWPC

- a public water supply distribution system is available within 200 feet of the subject parcel
- the groundwater plume is not located in an aquifer protection area and the groundwater plume is not located within the area of influence of any public water supply well

3.2 Surface Water Protection Criteria

The surface water protection criteria (SWPC) ensure that surface water quality is not impaired by the discharge of contaminated groundwater into a surface water body at constituent concentrations above the Water Quality Standards. The SWPC apply to a groundwater plume at the point where the plume discharges to a surface water body. Alternatively, the SWPC may be evaluated as an average of concentrations within the plume.

3.3 Volatilization Criteria

The volatilization criteria (VC) protects human health from volatile substances in shallow groundwater that may migrate from groundwater into overlying buildings. Under the current regulations, the VC are considered for areas where groundwater is within 15 feet of the ground surface or a structure intended for human occupancy; however, the DEEP is proposing that this compliance depth be increased to 30 feet. The VC are specific to a site's land use (i.e., residential versus industrial/commercial). Residential criteria apply unless an Environmental Land Use Restriction (ELUR) is filed to restrict the site's use to industrial/commercial. In evaluating the site with respect to the volatilization criteria, Fuss & O'Neill will consider the proposed 2003 VC.

3.4 CT DPH Drinking Water Action Levels

The CT DPH established drinking water action levels to be protective of human health. If analytical results from a potable water supply well exceed a drinking water action level, the CTDEEP is authorized to take further action in addressing groundwater contamination at the well location. Action levels were established for the most common groundwater contaminants including pesticides, VOCs, metals and petroleum constituents. Due to the presence of several potable wells in the assessment area, Fuss & O'Neill also evaluated groundwater analytical data with respect to these drinking water action levels.

4 Previous Environmental Assessments/Investigations

Previous environmental investigations conducted within the Village Center district of East Hampton include public and private potable supply well sampling, Phase I Environmental Site Assessments (ESAs) and Phase II ESAs at three town-owned Brownfield properties (13 Watrous Street, 103 Main Street and 3 Walnut Avenue) and sensitive receptor surveys.

As previously discussed, elevated concentrations of VOCs (primarily trichloroethylene [TCE] and tetrachloroethane [PCE]) were identified in the public water supply well located at 7 Summit Street in 1984. Subsequently, a hydrogeologic investigation, including the sampling of private potable supply wells, was conducted in the vicinity of Main Street and Summit Street within Village Center to investigate the extent of the groundwater plume. Analytical results from this investigation identified a widespread area of bedrock aquifer contamination (VOCs) in the area of Main Street and Summit Street, extending from Center School; approximately at the intersection of Summit Street and Bevin Boulevard, south to approximately the intersection of Main Street and Skinner Street. As depicted on the 1984 VOC plume map (provided in *Appendix A*), the VOC contamination extended down-valley in a generally northeast to southwest orientation; following the general strike of the bedrock formation in the area.

Following the identification of the bedrock groundwater plume, 19 private potable wells located within the plume area, as shown on the Figure in *Appendix A*, were appropriately abandoned and potable water supply alternatives were evaluated. In 1990, a second potable water supply well was installed west of the groundwater plume on the Center School property and an extensive groundwater filtration system was installed to provide potable water to parcels within the Village Center.

Phase II ESA activities conducted at 13 Watrous Street, 103 Main Street and 3 Walnut Avenue in 2005 also identified impacts to soil and both the shallow bedrock and overburden groundwater aquifers. Refer to the January 2015 QAPP's "Village Center Parcel Location Map" included as *Appendix B* for the locations of these parcels. These investigation results confirmed that releases had occurred at each of the town-owned properties investigated and contaminants of concern included VOCs, ETPH, PAHs, metals, PCBs and pesticides. Specifically, elevated concentrations of contaminants of concern were detected in groundwater (TCE at 13 Watrous Street, and antimony and lead at 103 Main Street,) at concentrations in excess of the applicable DEEP RSR criteria. These elevated concentrations triggered Significant Environmental Hazards (SEH) for both properties and, in accordance with state regulations, SEH notifications were prepared and submitted to the DEEP in August 2005.

During the preparation of the 2005 SEH Notifications, the Town of East Hampton proactively conducted sampling of two previous water supply wells at 13 Watrous Street. Sampling results identified concentrations of TCE and pesticides (specifically chlordane, dieldrin and trans-nonachlor) within one of the former supply wells at this parcel.

Additionally, and in response to the 2005 SEH Notifications, a sensitive receptor survey was conducted which identified the presence of private potable wells within 500-feet of 13 Watrous Street. The potable wells at 45 residences in the area were sampled by Chatham Health Department between October 2005 and June 2006. Analytical results from these sampling events identified VOCs (including methyl-tert-butyl ether [MTBE] and toluene; common gasoline constituents, as well as TCE and 1,2-dichlorothene; a breakdown product of TCE) were detected within samples collected from several supply wells. All of the VOC concentrations detected were below drinking water standards.

Subsequently, a Sensitive Receptor Survey Update was conducted in 2009, which confirmed that 48 properties were located within a 500-foot radius around 13 Watrous Street. Of these properties, 11 were serviced by the Village Center supply wells located at 7 Summit Street and had previously abandoned their former supply wells. The remaining 37 properties in the study area, located primarily upgradient of 13 Watrous Street, were presumably serviced by private water supply wells.

Limited remedial activities, including the removal of PCB-impacted soil, were also conducted at 13 Watrous in 2010. However, documents reviewed indicated that additional soil remediation activities are required at this parcel.

Refer to Appendix C for figures and data tables, prepared by Tighe & Bond, summarizing the results of the 2005/2006 groundwater and potable well sampling within Village Center, specifically at 13 Watrous Street, 103 Main Street and 3 Walnut Avenue.

5 Groundwater Quality Assessment Procedures

Groundwater quality assessment activities, including monitoring well installation and development, groundwater sampling, and a monitoring well elevation survey, were conducted at the Site between April 16 and May 1, 2015. This section provides an overview of the data collection and evaluation methods, and describes data quality objectives, constituents of concern, laboratory methods used to analyze environmental samples, and field investigation methods.

5.1 Data Quality Objectives and Reasonable Confidence Protocols

Data quality objectives are used to ensure that data is collected in a manner that permits it to be used to evaluate a site and support decisions based on those evaluations. Procedures used to ensure that the DQOs for the project were met include:

- Selection of analytical methods with appropriate detection limits
- Use of pre-determined sample handling and custody procedures
- Use of pre-determined data management and documentation procedures
- Selection of sampling locations and constituents of concern appropriate to the historical groundwater plume area
- Use of trip blanks, duplicates, and laboratory matrix spikes (MS) for quality assurance/quality control (QA/QC)
- Use of Connecticut's Reasonable Confidence Protocols and laboratory QA/QC procedures

5.2 Constituents of Concern

Based on a review of available previous assessment and investigation reports conducted within the Village Center and in coordination with the Town Brownfields Redevelopment Agency, the following list of constituents of concern (COC) were targeted for the groundwater quality assessment. The analytical methods were selected to identify and evaluate potential releases because they are capable of achieving analytical detection limits less than the baseline numeric RSR criteria applicable to the Site.

- Volatile organic compounds (VOCs) via EPA Method 8260
- Extractable total petroleum hydrocarbons (ETPH) via CT ETPH Method
- Polynuclear aromatic hydrocarbons (PAHs) via EPA Method 8270

The rationale for these COCs are based on the known environmental concerns identified for the former manufacturing processes, presence of petroleum underground storage tanks (USTs), other known site operations at properties within the Village Center and specific project objectives from the Town.

5.3 Monitoring Well Installation & Development

Between April 16 and 17, 2015 six overburden monitoring wells were installed at pre-determined locations throughout the Village Center as indicated in the table below.

Monitoring Well	Approximate Location	Rationale
FO-01	Southwest corner of 7 Summit	Downgradient of potential source areas to the
	Street	east/northeast
FO-02	Southeast corner of 94 Main Street;	Located within the approximate southwest extent
	near intersection of Skinner & Main	of the historical VOC plume area and
	Street	crossgradient from two potential source areas
FO-03	Town ROW at intersection of	Downgradient of potential sources along Summit
	Barton Hill Road & Main Street	Street to the east/northeast and crossgradient of
		potential source to the north
FO-04	Town ROW just south of Watrous	Cross/downgradient of potential source areas to
	& Summit Street intersection	the east/southeast
FO-05	Town ROW along southern	Located within the approximate southern extent
	property boundary of 3 Walnut	of historical VOC plume area
	Street	
FO-06	Town ROW along east-central	Downgradient of a potential source area to the
	boundary of 7 Summit Street &	northeast
	Bevin Blvd	

Notes:

ROW - Right of Way

Fuss & O'Neill oversaw Glacier Drilling, LLC (Glacier) advance each monitoring well location using their Geoprobe[™] 8040 direct-push drill rig. Soil cores were collected continuously from the ground surface using a 60-inch, stainless steel sampler and each core was inspected by a Fuss & O'Neill field hydrogeologist for physical evidence of contamination, such as staining or odors. Soils were also screened for the presence of vapor-phase VOCs using a photoionization detector (PID). All excess drill cuttings were containerized into one 55-gallon drum and staged on the 13 Watrous Street property; pending future disposal as part of remediation activities to be conducted by the Town's Brownfields Redevelopment Agency.

Six, 1.5-inch groundwater monitoring wells (FO-01 through FO-06) were completed at depths ranging from 6 to 16 feet below grade with screened intervals ranging from 2 to 10 feet, depending on the total depth of the wells. A filter sand pack was extended to approximately one-foot above the screened interval and a bentonite seal was installed over the sand pack and screened interval to prevent surface infiltration. Each monitoring well was completed at grade with flush-mount curb boxes set in concrete.

Following installation, each monitoring well was developed using surge-and-purge techniques to remove suspended sediments from the well and to increase the hydraulic connection between the wells and the aquifer. Additionally, three previously existing monitoring wells on 13 Watrous Street (TB-MW-1W through TB-MW-3W) and five previously existing monitoring wells on 103 Main Street (TB-MW-1M through TB-MW-5M) were located and developed using the same surge-and-purge techniques. On April 17, 2015, Fuss & O'Neill measured depth to groundwater at each of the six newly installed monitoring wells and the eight previously existing monitoring wells to calculate water table elevation and determine groundwater flow direction across the Site, as discussed further in *Section 6.1* below.

Well completion details and groundwater elevation data is summarized on *Table 1*, and the monitoring well completion reports are included with the boring logs in *Appendix D*.

5.4 Groundwater Sampling

On April 29, 2015, a Fuss & O'Neill hydrogeologist conducted the groundwater sampling event using a peristaltic pump, dedicated tubing, and EPA-approved low-flow sampling techniques. Groundwater quality parameters including pH, specific conductivity, dissolved oxygen, temperature, turbidity, and oxidation/reduction potential, were monitored, recorded and allowed to stabilize prior to sample collection.

Groundwater samples were collected from a total of seven monitoring wells including the following:

- FO-02 (located at 94 Main Street)
- FO-03 (located at the intersection of Barton Hill Road and Main Street)
- FO-05 (located at 3 Walnut Avenue)
- TB-MW-1W (located on 13 Watrous Street)
- TB-MW-2W (located on 13 Watrous Street)
- TB-MW-3W (located on 13 Watrous Street)
- TB-MW-4M (located on 103 Main Street)

Each of the groundwater samples were collected in laboratory provided glassware and were submitted to Phoenix for analysis of VOCs, ETPH and PAHs, as outlined in the January 2015 Site-Specific QAPP.

It is noted that monitoring wells FO-01, FO-04 and FO-06 had insufficient water volume to obtain a groundwater sample at the time of the sampling event. Additionally, only one monitoring well was sampled from the existing network of wells located on 103 Main Street. The Town's Brownfields Redevelopment Agency made the decision to sample only one well from this parcel due to the fact that

the five existing wells are in very close proximity to each other relative to the potential area of groundwater impacts within the Village Center. Monitoring well TB-MW-4M was selected as the sampling location that would be most representative of groundwater quality of the overburden aquifer from the southern extent of the Village Center.

Copies of the monitoring well field data sheets are included in *Appendix E*.

5.5 Monitoring Well Elevation Survey

On May 1, 2015, Fuss & O'Neill conducted an elevation survey on the six newly installed monitoring wells and seven previously existing monitoring wells located between 13 Watrous Street and 103 Main Street. Each monitoring well location was surveyed in reference to NAD 83/NAVD 88 to obtain measuring point elevations. The monitoring well coordinates and elevation data are provided in *Table 2*.

5.6 QA/QC Review and Data Usability

In order to ensure that the analytical data collected was suitable for evaluating compliance with the RSRs, quality assurance/quality control (QA/QC) samples were collected in the field and also submitted to the laboratory. In addition, the laboratory provided a statement of reasonable confidence and project narrative that accompanied each data package. The following subsections summarize our review of the results of the QA/QC samples and the Reasonable Confidence Protocols (RCP) package and project narratives provided by the laboratory.

Refer to Appendix F for the Data Validation Completeness Checklist.

Trip Blanks

A trip blank accompanied the groundwater samples to the laboratory and was analyzed for VOCs to determine whether samples might have been compromised during sample container handling or transport. VOCs were not detected above laboratory reporting limits in the trip blank.

Duplicate Samples

One duplicate groundwater sample was submitted during the groundwater quality assessment to check the precision of laboratory analysis and field sampling procedures. The duplicate was collected at the same time as the corresponding primary sample (TB-MW-2W) and was analyzed for the same parameters (VOCs, ETPH and PAHs). Precision is measured by the relative percent difference (RPD) between the primary and duplicate sample results with RPD goals being ≤30 percent for water. Overall, the results between the primary and the duplicate sample were within the acceptable percentage.

Reasonable Confidence Protocols

Fuss & O'Neill reviewed the reasonable confidence protocol packages and case narratives provided with the laboratory analytical report. The laboratory reported that "reasonable confidence" was achieved on all analyses conducted. A review of the narratives identified the following QA/QC issues that were considered in interpreting the data:

The laboratory control sample (LCS) and/or the LCS Duplicate (LCSD) recovery was below the
method criteria for select VOCs including: chloromethane, dichlorodifluoromethane and
trichlorofluoromethane. All other QC data was acceptable, however, so therefore there is no
significant bias suspected.

Based on the review of the reasonable confidence protocol packages and case narratives provided with the laboratory analytical report, the data is determined to be usable.

6 Groundwater Quality Assessment Results

This section presents the findings of the Groundwater Quality Assessment and relates the data gathered to the previous data for the Site reviewed during preparation of the January 2015 Site-Specific QAPP.

6.1 Groundwater Elevation

The depth to groundwater measurements from April 17, 2015 and monitoring well elevations were used to calculate groundwater elevations across the Village Center, as summarized on *Table 1*.

Bedrock groundwater elevations from the three bedrock monitoring wells located on 13 Watrous Street ranged from 413.41feet (TB-MW-3W) to 416.27 (TB-MW-2W). Overburden groundwater elevations from the newly installed wells and previously existing wells located on 103 Main Street ranged from 381.38 feet (FO-03) to 366.99 feet (TB-MW-5M).

These elevations were used to generate groundwater contours, which indicate that groundwater flow direction is to the southwest in the shallow bedrock aquifer on 13 Watrous Street. Similarly, the overburden groundwater flow direction along the southwest portion of the Village Center appears to be down valley towards the south/southwest. The groundwater contours and flow direction are depicted on the groundwater contour map provided as *Figure 2*.

6.2 Groundwater Analytical Results

Each of the seven groundwater samples were submitted to Phoenix for analysis of VOCs, ETPH, and PAHs. Laboratory analytical results indicated that ETPH was not detected above laboratory reporting limits in any of the groundwater samples. Groundwater analytical results are discussed below and are summarized on *Table 3*. The laboratory analytical report is included in *Appendix G*.

Concentrations of the VOC constituents toluene and/or trichloroethylene (TCE) were detected in two of the seven samples collected. Toluene was detected at a concentration of 49 micrograms per liter (ug/L) in monitoring well FO-02, which is below the applicable RSR criteria. Although, the concentration of toluene identified in monitoring well FO-02 is below applicable criteria, it could be indicative of a minor release to groundwater in the area of 94 Main Street. Considering the lengthy industrial and commercial history of the properties within Site vicinity, the source of this release could not be immediately identified.

TCE was detected at a concentration of 15 ug/L in monitoring well TB-MW-1W (located on 13 Watrous Street). TCE and other VOCs were not detected in the samples collected from the other two monitoring wells at 13 Watrous Street. Despite the fact that the concentration of TCE detected in the sample from TB-MW-1W in April 2015 exceeds the GWPC of 5 ug/L; a determination of compliance with the GWPC in regard to groundwater quality at 13 Watrous Street will require additional sampling events.

Trace concentrations of one or more PAH constituents were also detected in the samples collected from monitoring wells FO-02, FO-03, FO-05, TB-MW-1W, and TB-MW-2W. These constituents were detected at trace concentrations, however, well below the applicable RSR criteria. PAHs were not detected above laboratory reporting limits in monitoring wells TB-MW-3W or TB-MW-4M.

The 2015 groundwater sampling results were also reviewed with regards to the Significant Environmental Hazard (SEH) conditions Connecticut General Statutes 22a-6u in effect as of the date of this report as outlined by the Connecticut Department of Energy & Environmental Protection (CT DEEP). Specifically, SEH notifications are required if contaminants are identified above the established GWPC at a parcel that is located within 500-feet upgradient of a private or public potable water supply well. An SEH condition was not identified based on review of the April 2015 sampling data.

Although the concentration of TCE exceeded the GWPC in TB-MW-1W, 13 Watrous Street is not located upgradient of a private or public potable water supply well, therefore this detection does not trigger a SEH. Additionally, it is noted that the nearest public water supply well located at 7 Summit Street, is regularly sampled and monitored for the presence of volatile organic compounds.

6.3 Groundwater Results Comparisons

In April 2015, a total of seven groundwater samples were collected from across the Village Center and submitted to Phoenix for analysis of VOCs, ETPH and PAHs. Laboratory analytical results were compared to the applicable RSR criteria and previous groundwater results to provide an updated summary of groundwater quality in the Site vicinity.

6.3.1 13 Watrous Street

Each of the three monitoring wells located on 13 Watrous Street (identified as TB-MW-1W through TB-MW-3W) were sampled as part of this groundwater quality assessment, and the samples were analyzed for VOCs, ETPH and PAHs.

VOC laboratory analytical results from the April 2015 sampling event were compared to results from a previous sampling event conducted by others in August 2005 as depicted in the table below:

Monitoring Well	2005 Sampling Event	2015 Sampling Event
	I VOCs	
TB-MW-1W	CMA: 1.0 ug/L	TCE: 15 ug/L
	C12DCE: 0.71 ug/L	_
	TCE: 27 ug/L	
TB-MW-2W	TCE: 2.4 ug/L	No VOCs Detected.
	PCE: 2.9 ug/L	
	MTBE: 0.91 ug/L	
TB-MW-3W	TCE: 1.7 ug/L	No VOCs Detected.
	Freon11: 1.7 ug/L	

Notes:

CMA - Chloromethane

C12DCE - Cis-1,2-Dichloroethene

TCE – Trichloroethylene PCE – Tetrachloroethane

VOCs – Volatile Organic Compounds

This comparison indicated that overall, VOC concentrations within these three monitoring wells appeared to have decreased, with only TCE detected in one monitoring well (TB-MW-1W) in April 2015. Although the TCE concentration identified in TB-MW-1W is lower than the 2005 concentration within this well, a VOC plume persists in the shallow bedrock aquifer at this property. The concentration of TCE detected in TB-MW-1W is likely associated with historical releases associated with previous on-site metal degreasing and cleaning activities at 13 Watrous Street, as previously identified within environmental assessments conducted for this parcel. Given the lengthy industrial history and density of the surrounding area, however, it is possible that off-site sources of TCE exist in the area.

Additionally, several PAH constituents were detected in April 2015 at monitoring wells TB-MW-1W and TB-MW-2W that were not identified in the 2005 sampling event. These trace PAH concentrations are also indicative of a residual groundwater plume in the shallow bedrock aquifer at this property.

Similarly to the August 2005 results, ETPH was not detected above laboratory reporting limits in any of the groundwater samples collected from 13 Watrous Street during the April 2015 sampling event.

6.3.2 103 Main Street

One of the five existing monitoring wells on the 103 Main Street parcel was sampled during the 2015 Groundwater Quality Assessment. The sampled collected from this well (TB-MW-4M) was submitted to Phoenix for analysis of VOCs, ETPH and PAHs. Analytical results indicated that none of the parameters analyzed were detected above laboratory detection limits. These results are consistent with the 2005 analytical results from this monitoring well in which ETPH and VOCs were not detected at this location.

6.3.3 Overall Groundwater Quality – Village Center

Overall, the contaminant concentrations identified in groundwater samples collected from the unconsolidated deposits aquifer from four monitoring well locations throughout the Village Center and three samples collected from the shallow bedrock aquifer at 13 Watrous Street in 2015 appear slightly lower than the previous 2005 sampling event.

Groundwater analytical results obtained during this sampling event indicates a groundwater contaminant source of VOCs (TCE) and PAHs exists in the northeast portion of Village Center in the area of 13 Watrous Street. Additionally, a potential new source of aromatic VOCs (specifically toluene) was identified in the vicinity of monitoring well FO-02 located near the intersection of Main Street and Skinner Street. The current VOC groundwater plume configurations from this sampling event are depicted on *Figure 3* while the PAH groundwater plume configuration is depicted on *Figure 4*.

When compared to the historical data as reported on Fuss & O'Neill's 1986 Hydrogeologic Investigation Map (*Appendix A*), the current VOC concentrations in groundwater appear relatively unchanged. It is noted, however, that the concentrations depicted on the 1986 figure were collected from potable water supply wells installed at greater depths in the bedrock aquifer.

A data gap exists in the identification for a potential source of contamination in the northeast portion of the Village Center because groundwater samples could not be obtained from the location in the northern limit of the previously identified VOC plume (in the vicinity of Bevin Boulevard and Summit Street). As indicated on the 1986 Hydrogeologic Investigation map provided in *Appendix A*, this was the upgradient-most area of the VOC plume; however, samples could not be obtained during the April 2015 sampling event because groundwater in this area is located below the bedrock surface.

7 Conclusions

Fuss & O'Neill conducted the Groundwater Quality Assessment activities at the Site between April 16 and May 1, 2015. Fuss & O'Neill reviewed analytical results obtained from this assessment and compared them to the applicable CT DEEP RSRs numeric criteria, and to the previous groundwater analytical data collected by others.

Current Plume Concentrations & Configuration

An evaluation of this data has indicated that a VOC plume exists in the shallow bedrock groundwater aquifer at 13 Watrous Street and a minor VOC plume exists in the overburden aquifer located in the vicinity of 94 Main Street (monitoring well FO-02). Overall, the VOC concentrations identified in the monitoring wells located at 13 Watrous Street have decreased since the 2005 groundwater sampling event.

Additionally, the 2015 assessment has identified trace concentrations of PAHs in groundwater across the Village Center in both the shallow bedrock aquifer (13 Watrous Street) and in the overburden aquifer as screened by monitoring wells FO-02, FO-03 and FO-05.

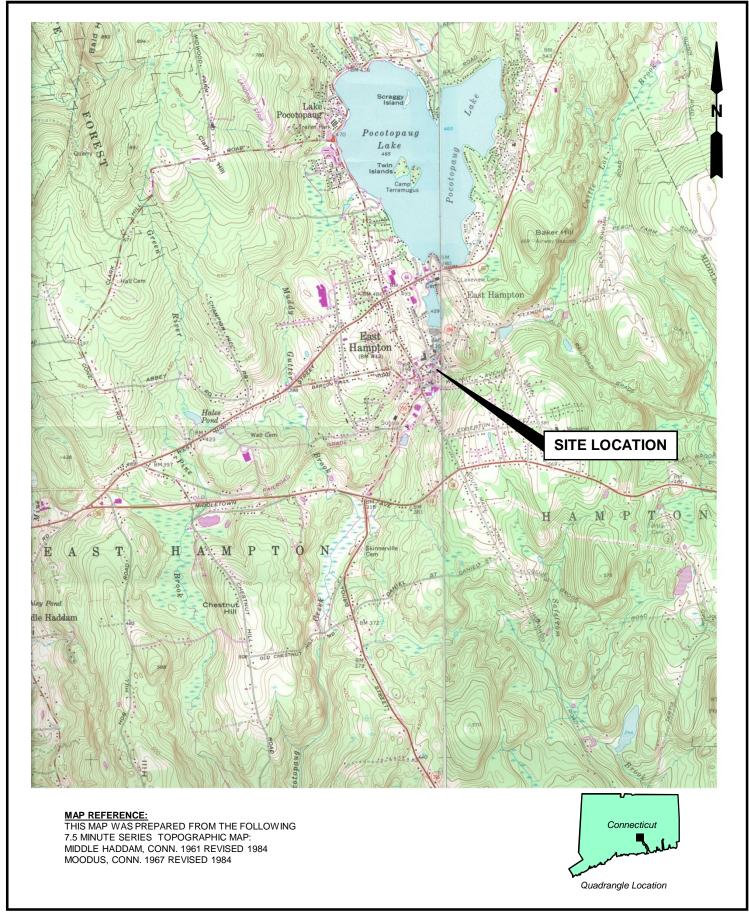
Based on the results from the 2015 Groundwater Quality Assessment at the selected monitoring well locations, a VOC plume is present in at least the shallow bedrock aquifer in the northeast portion of the Village Center (13 Watrous Street) and within the overburden aquifer in the southwest portion of the Village Center. This data also suggests that the groundwater plumes in these areas may extend beyond the 2015 sampling locations based on the groundwater flow direction.

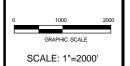
Overall, based on the information obtained from the newly installed monitoring well network (which was limited to only town owned parcels and right-of-ways) no evidence was obtained to indicate that the footprint of the 1986 bedrock plume is expanding due to an ongoing release to the unconsolidated deposits aquifer.

8 Limitations of Work Product

This document was prepared for the sole use of the Town of East Hampton, the only intended beneficiary of our work. Those who may use or rely upon the report and the services (hereafter "work product") performed by Fuss & O'Neill, Inc. and/or its subsidiaries or independent professional associates, subconsultants and subcontractors (collectively the "Consultant") expressly accept the work product upon the following specific conditions.

- 1. Consultant represents that it prepared the work product in accordance with the professional and industry standards prevailing at the time such services were rendered.
- 2. The work product may contain information that is time sensitive. The work product was prepared by Consultant subject to the particular scope limitations, budgetary and time constraints and business objectives of the Client which are detailed therein or in the contract between Consultant and Client. Changes in use, tenants, work practices, storage, Federal, state or local laws, rules or regulations may affect the work product.
- 3. The observations described and upon which the work product was based were made under the conditions stated therein. Any conclusions presented in the work product were based solely upon the services described therein, and not on scientific or engineering tasks or procedures beyond the scope of described services.
- 4. In preparing its work product, Consultant may have relied on certain information provided by state and local officials and information and representations made by other parties referenced therein, and on information contained in the files of state and/or local agencies made available at the time of the project. To the extent that such files which may affect the conclusions of the work product are missing, incomplete, inaccurate or not provided, Consultant is not responsible. Although there may have been some degree of overlap in the information provided by these various sources, Consultant did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this project. Consultant assumes no responsibility or liability to discover or determine any defects in such information which could result in failure to identify contamination or other defect in, at or near the site. Unless specifically stated in the work product, Consultant assumes no responsibility or liability for the accuracy of drawings and reports obtained, received or reviewed.
- 5. If the purpose of this project was to assess the physical characteristics of the Site with respect to the presence in the environment of hazardous substances, waste or petroleum and chemical products and wastes as defined in the work product, unless otherwise noted, no specific attempt was made to check the compliance of present or past owners or operators of the Site with Federal, state, or local laws and regulations, environmental or otherwise.
- 6. If water level readings have been made, these observations were made at the times and under the conditions stated in the report. However, it must be noted that fluctuations in water levels




- may occur due to variations in rainfall, passage of time and other factors and such fluctuations may affect the conclusions and recommendations presented herein.
- 7. Except as noted in the work product, no quantitative laboratory testing was performed as part of the project. Where such analyses have been conducted by an outside laboratory, Consultant has relied upon the data provided, and unless otherwise described in the work product has not conducted an independent evaluation of the reliability of these tests.
- 8. If the conclusions and recommendations contained in the work product are based, in part, upon various types of chemical data, then the conclusions and recommendations are contingent upon the validity of such data. These data (if obtained) have been reviewed and interpretations made by Consultant. If indicated in the work product, some of these data may be preliminary or screening-level data and should be confirmed with quantitative analyses if more specific information is necessary. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time and other factors.
- 9. Chemical analyses may have been performed for specific parameters during the course of this project, as described in the work product. However, it should be noted that additional chemical constituents not included in the analyses conducted for the project may be present in soil, groundwater, surface water, sediments or building materials at the Site.
- 10. Ownership and property interests of all documents, including reports, electronic media, drawings and specifications, prepared or furnished by Consultant pursuant to this project are subject to the terms and conditions specified in the contract between the Consultant and Client, whether or not the project is completed.
- 11. Unless otherwise specifically noted in the work product or a requirement of the contract between the Consultant and Client, any reuse, modification or disbursement of documents to third parties will be at the sole risk of the third party and without liability or legal exposure to Consultant.
- 12. In the event that any questions arise with respect to the scope or meaning of Consultant's work product, immediately contact Consultant for clarification, explanation or to update the work product. In addition, Consultant has the right to verify, at the party's expense, the accuracy of the information contained in the work product, as deemed necessary by Consultant, based upon the passage of time or other material change in conditions since conducting the work.
- 13. Any use of or reliance on the work product shall constitute acceptance of the terms hereof.

Figures

SITE LOCATION MAP

VILLAGE CENTER

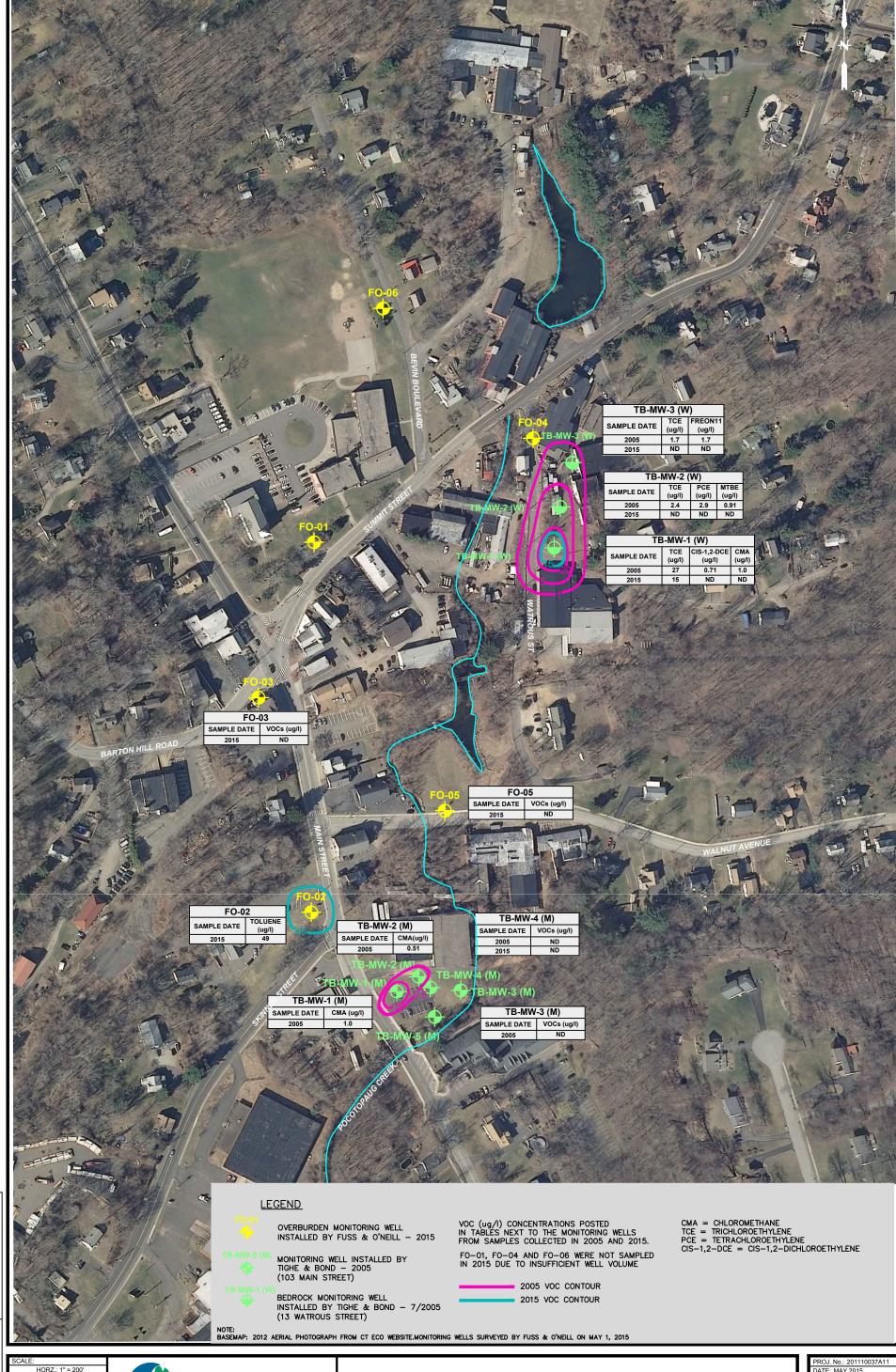
EAST HAMPTON CONNECTICUT

PROJ. No:20110037A11 DATE: JUNE 2014

FIGURE 1

e Path: J.)DWGIP2011\0037A11_EnvironmentallPlan\20110037A11_GWC01.dwg Layout: 11X17-P Plotted: Mon, June 01, 2015 - 11: S.VIEW: LAYER STATE: Ditter: DWG TO PDF.PC3 CTB File: FO.S

SCALE:
HORZ: 1" = 200'
VERT:
DATUM:
HORZ:: NAD83
VERT:: NGVD29
0 100 2
GRAPHIC SCALE



EAST HAMPTON

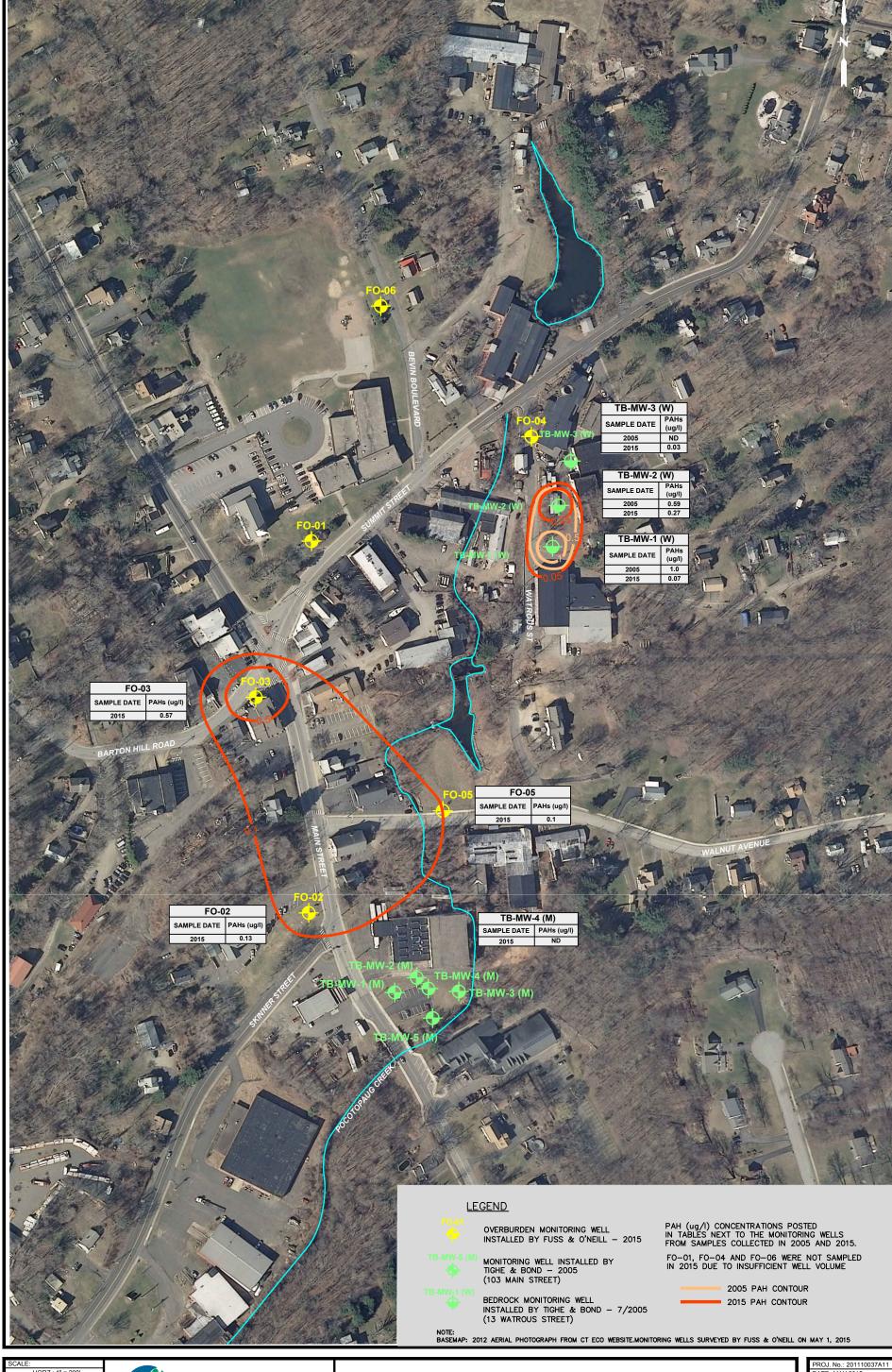
VILLAGE CENTER
GROUNDWATER ELEVATION CONTOUR MAP
APRIL 17, 2015
TOWN OF EAST HAMPTON

FIGURE 2

CONNECTICUT

110037A11_STP04.dwg Layout: 11X17-P Plotted: Mon, June 01, 2015-TE:] Plotter: DWG TO PDF.PC3 CTB File: F

HORZ.: 1" = 200' GRAPHIC SCALE



EAST HAMPTON

VOC PLUME MAP - 2005 vs. 2015

TOWN OF EAST HAMPTON

FIGURE 3

10037A11_STP05.dwg Layout: 11X17-P Plotted: Mon, June 01, 2015 -- IE: Dwg TO PDF.PC3 CTB File: F

HORZ.: 1" = 200' GRAPHIC SCALE

EAST HAMPTON

PAH PLUME MAP - 2005 vs. 2015

TOWN OF EAST HAMPTON

FIGURE 4

Tables

Table 1 Monitoring Well Construction Details and Groundwater Elevation Data Groundwater Quality Assessment Report

Village Center East Hampton, Connecticut

		Well C	onstruction	Details		GW Elevation Data - April 17, 2015			
Monitoring	Monitoring Well	MW	MW	MW	Screen	Screened	PVC	Depth to	Groundwater
Well ID	Location	Installation	Depth	Diameter	Interval	Formation	Elevation	Groundwater	Elevation
		Date	(feet bgs)	(inches)	(feet)	FOITIALIOII	(feet)	(feet)	(feet)
FO-01	7 Summit Street	4/16/2015	NM	1.5"	3 - 6	Overburden	406.61	Dry	NM
FO-02	94 Main Street	4/16/2015	16.03	1.5"	6 - 16	Overburden	379.77	8.10	371.67
FO-03	Barton Hill Rd/Main St	4/16/2015	14.93	1.5"	5 - 15	Overburden		9.05	382.31
FO-04	Summit/Watrous St	4/16/2015	NM	1.5"	4 - 6	Overburden	422.49	Dry	NM
FO-05	3 Walnut Ave	4/17/2015	11.16	1.5"	2 - 11	Overburden	380.23	2.6	377.63
FO-06	7 Summit Street	4/17/2015	NM	1.5"	2 - 7	Overburden	424.72	Dry	NM
TB-MW-1W		7/26/2005	22.69	2"	10 - 20	Bedrock	422.82	11.97	410.85
TB-MW-2W	13 Watrous Street	7/26/2005	22.13	2"	10 - 20	Bedrock	425.20	8.00	417.20
TB-MW-3W		7/26/2005	24.53	2"	10 - 20	Bedrock	426.32	7.40	418.92
TB-MW-1M		7/21/2005	15.37	2"	5 -15	Overburden	375.55	6.50	369.05
TB-MW-2M		7/21/2005	14.61	2"	5 - 15	Overburden	376.92	8.24	368.68
TB-MW-3M	103 Main Street	7/21/2005	18.06	2"	5 - 15	Overburden	379.90	9.35	370.55
TB-MW-4M		7/21/2005	15.46	2"	5 - 15	Overburden	376.42	6.93	369.49
TB-MW-5M		7/21/2005	14.06	2"	Unk	Unk	372.08	4.15	367.93

Notes:

Well depths were confirmed by Fuss & O'Neill in April 2015. Screened depth intervals for monitoring wells located on 13 Watrous Street and 103 Main Street was obtained from historical information provided by others.

Each monitoring well location was surveyed in reference to NAD 83/ NAVD 88

Unk = unknown

NM = not measured

Table 2 Monitoring Well Survey Coordinates Groundwater Quality Assessment Report

Village Center East Hampton, Connecticut

	Northing	Easting	Elevation
	rvortining	Lasting	(feet)
FO-01			
TOS	770779.89	1067834.619	406.91
PVC	770779.869	1067834.606	406.61
FO-02			
TOS	769959.52	1067828.482	380.03
PVC	769959.52	1067828.559	379.77
FO-03			
TOS	770435.329	1067711.532	391.64
PVC	770435.397	1067711.405	391.36
FO-04			
TOS	771010.446	1068319.92	422.68
PVC	771010.453	1068319.815	422.49
FO-05			
TOS	770184.801	1068124.574	380.40
PVC	770184.859	1068124.586	380.23
FO-06			
TOS	771298.371	1067987.666	425.00
PVC	771298.355	1067987.589	424.72
TB-MW-1\	N		
TOS	770767.403	1068366.741	423.93
PVC	770767.616	1068366.762	422.82
TB-MW-2	V		
TOS	770858.445	1068380.113	425.87
PVC	770858.346	1068380.35	425.20
TB-MW-3\	V		
TOS	770956.567	1068407.037	425.97
PVC	770956.576	1068407.194	426.32
TB-MW-1	M		
TOS	769783.96	1068018.247	375.76
PVC	769783.962	1068018.252	375.55
TB-MW-2I	M		
TOS	769816.545	1068066.919	377.28
PVC	769816.532	1068066.839	376.93
TB-MW-3I	M		
TOS	769786.242	1068159.671	379.98
PVC	769786.375	1068159.556	379.90
TB-MW-4I	M		
TOS	769792.526	1068092.434	376.70
PVC	769792.53	1068092.306	376.42
TB-MW-51	M		
TOS	769727.496	1068102.033	372.31
PVC	769727.494	1068102.132	372.08

Notes:

Each monitoring well location was surveyed in reference to NAD 83 / NAVD 88.

TOS - Top of steel

PVC - Top of PVC

Table 3 Summary of Groundwater Analytical Results Groundwater Quality Assessment Report

Village Center East Hampton, Connecticut

			Mo	onitoring Well ID	FO-02	FO-03	FO-05	TB-MW-1W	TB-MW-2W	TB-MW-2W DUP	TB-MW-3W	TB-MW-4M	Trip Blank
				Sample ID Sample Date	1176150429-08 4/29/2015	1176150429-09 4/29/2015	1176150429-06 4/29/2015	1176150429-05 4/29/2015	1176150429-03 4/29/2015	1176150429-04 4/29/2015	1176150429-02 4/29/2015	1176150429-07 4/29/2015	1176150429-01 4/29/2015
CONSTITUENTS	GWPC	SWPC	Res VC	CT DPH Drinking Water Action Levels									
Petroleum Hydrocarbons (mg/L) ETPH-CT	0.25	NE	NE	0.25	< 0.074	<0.07	<0.072	< 0.07	< 0.07	< 0.074	< 0.07	<0.074	NA
PAHs, Total (ug/L) Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Indeno (1,2,3-cd)pyrene Phenanthrene Pyrene	0.06 0.2 0.08 0.5 [1.1] [0.2] 280 [0.2] 200 200	0.3 0.3 0.3 0.3 [47] [1.3] 3700 [14.8] 0.3 110000	NE NE NE NE NE NE NE NE [50000]	NE NE NE NE NE NE NE NE NE	0.03 0.03 0.04 <0.02 0.03 <0.01 <0.1 <0.02 <0.07 <0.1	0.04 0.03 0.04 <0.02 0.04 <0.01 0.15 <0.02 0.1 0.17	0.03 0.02 0.03 <0.02 0.02 <0.01 <0.11 <0.02 <0.07 <0.11	0.02 <0.02 0.03 <0.02 0.02 <0.01 <0.1 <0.02 <0.07 <0.1	0.05 0.05 0.07 0.03 0.03 <0.01 <0.1 0.04 <0.07 <0.1	0.03 <0.02 <0.02 <0.02 <0.02 <0.01 <0.11 <0.011 <0.07 <0.11	<0.02 <0.02 <0.02 <0.02 <0.02 <0.01 <0.1 <0.02 <0.07 <0.1	<0.02 <0.02 <0.02 <0.02 <0.02 <0.01 <0.1 <0.02 <0.07 <0.1	NA NA NA NA NA NA NA NA
VOCs (ug/L) Tetrachloroethylene Toluene Trichloroethylene	5 1000 5	88 4000000 2340	1500 23500 219	5 150 1	<1.0 49 <1.0	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	<1.0 <1.0 15	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0

Notes:

Units: ug=micrograms, mg=milligrams, L=liter

GWPC = groundwater protection criteria

SWPC = surface water protection criteria

Res VC = residential volatilization criteria

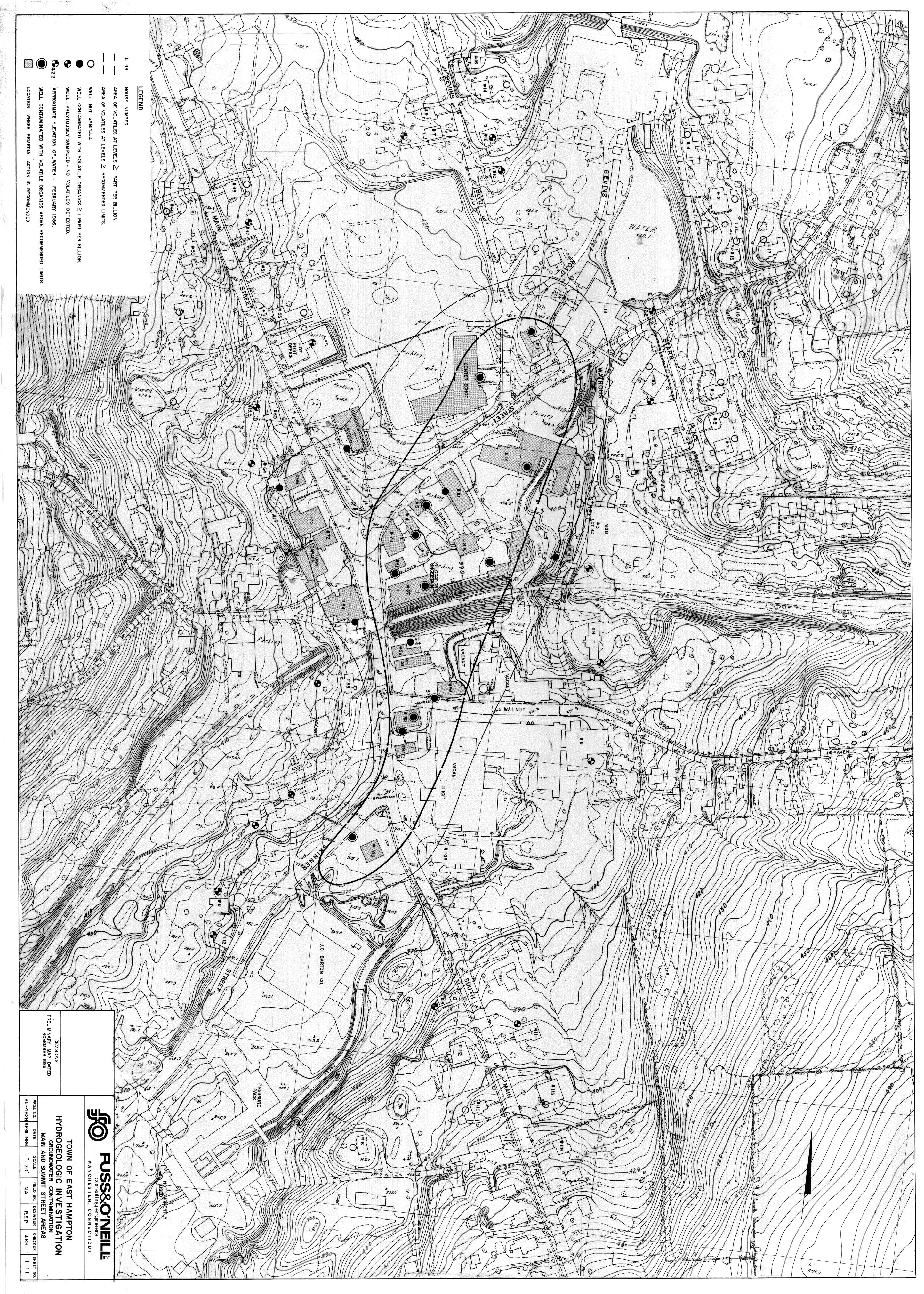
NE = no established criteria

NA = not analyzed < = constituent not detected at the specified laboratory reporting limit

Bold and shaded cells indicates a concentration reported above baseline RSR criteria

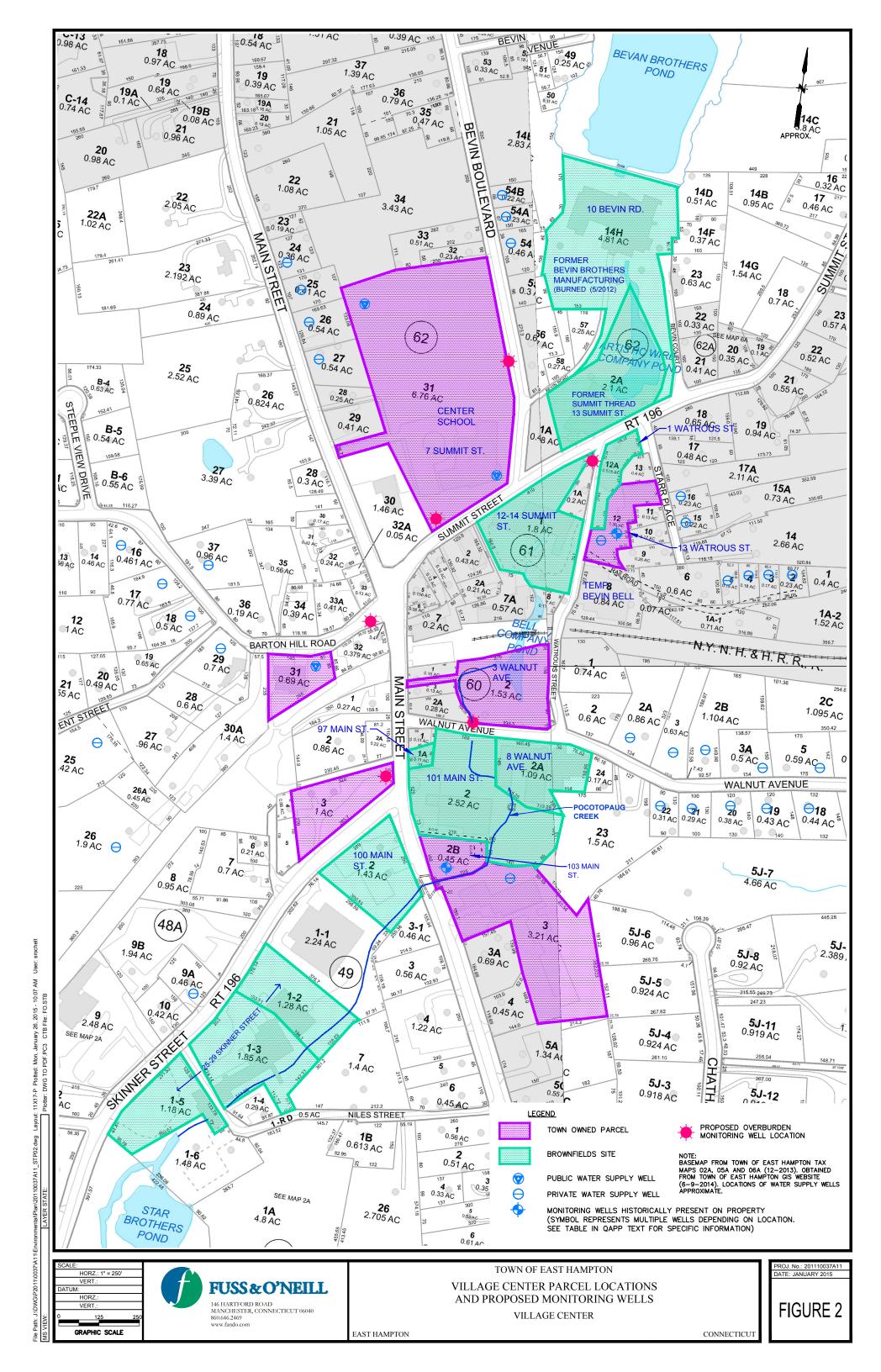
[1.1] = draft proposed 2008 RSR criteria (DEEP approval required)

Phenanthrene 0.077 is listed in the RSRs; however, DEEP has acknowledged that the correct value is 0.3


F:\P2011\0037\A11\GW Quality Assessment\Tables\Table 3 - GW Analytical Results

Duplicate sample collected; the highest concentration of the primary and duplicate samples is reported

Appendix A


1986 Hydrogeologic Investigation Groundwater Contamination Map

Appendix B

January 2015 QAPP - Village Center Parcel Location Map (Fuss & O'Neill)

Appendix C

2005 Figures & Data Tables: 13 Watrous Street, 103 Main Street, 3 Walnut Avenue & Potable Sampling Results (Tighe & Bond)

Table 4 Summary of Groundwater Analytical Data Phase II ESA

13 Watrous Street East Hampton, CT

	Connecticu	ut Remediation S	Standard Regulation	ons (RSRs)	WS MW-1	WS MW-2	WS MW-3
Parameter	GWPC	SWPC	RES GW VC	I/C GW VC	8/6/05	8/6/05	8/6/05
pH (SU)*	NE	NE	NE	NE	6.78	6.94	6.85
Specific Conductance (umhos/cm)*	NE	NE	NE	NE	212	239	310
Total Metals (ug/L)							
Antimony	6	86,000	NE	NE	ND<6	ND<6	ND <6
Arsenic	50	4	NE	NE	ND <10.0	ND <10.0	ND <10.0
Beryllium	4	4	NE	NE	ND <1.0	ND<1.0	ND<1.0
Chromium	5	6	NE	NE	ND <1.0	ND <1.0	ND <1.0
Chromium	50	1,200	NE	NE	6.1	10	9.7
Copper	1,300	48	NE	NE	19	39	21
Lead	15	13	NE	NE	5.4	6.8	7.9
Nickel	100	880	NE	NE	11	20	16
Mercury	2	0.4	NE	NE	ND <0.2	ND <0.2	ND <0.2
Selenium	50	50	NE	NE	ND <10.0	ND <10.0	ND <10.0
Silver	36	12	NE	NE	ND <5.0	ND <5.0	ND <5.0
Thallium	5	63	NE	NE	ND <10.0	ND <10.0	ND <10.0
Zinc	5,000	123	NE	NE	ND <50	ND <50	ND <50
Extractable Petroleum Hydrocarbons (CTETPH) (mg/L)	100	NE	NE	NE	ND <0.1	ND <0.1	ND <0.1
Volatile Organic Compounds (ug/L)**							
Chloromethane	3	NE	390	5,500	1.00	ND <1.0	ND <2.0
cis-1,2 - Dichloroethene	70	NE	830	11,000	0.71	ND <1.0	ND <2.0
Trichloroethene (TCE)	5	2,340	27	67	27.0	2.4	1.7
Tetrachloroethene	5	88	340	810	ND<1.0	2.9	ND <2.0
Methyl-tert-butyl ether (MTBE)	100	NE	21,000	50,000	ND<1.0	0.91	ND <2.0
Trichlorofluoromethane (Freon 11)	1,300	NE	1,300	4,200	ND <1.0	ND <1.0	1.70
Semi Volatile Organic Compounds (ug/L)**							
Di-n-butyl pthalate	3	NE	390	5,500	1.00	0.59	ND <2.0

Notes:

Values bolded and shaded exceed applicable standards

* - pH and specific conductance readings were averaged over the time period of sampling
** - Only detected compounds are shown in this table

NE - No Established Criteria

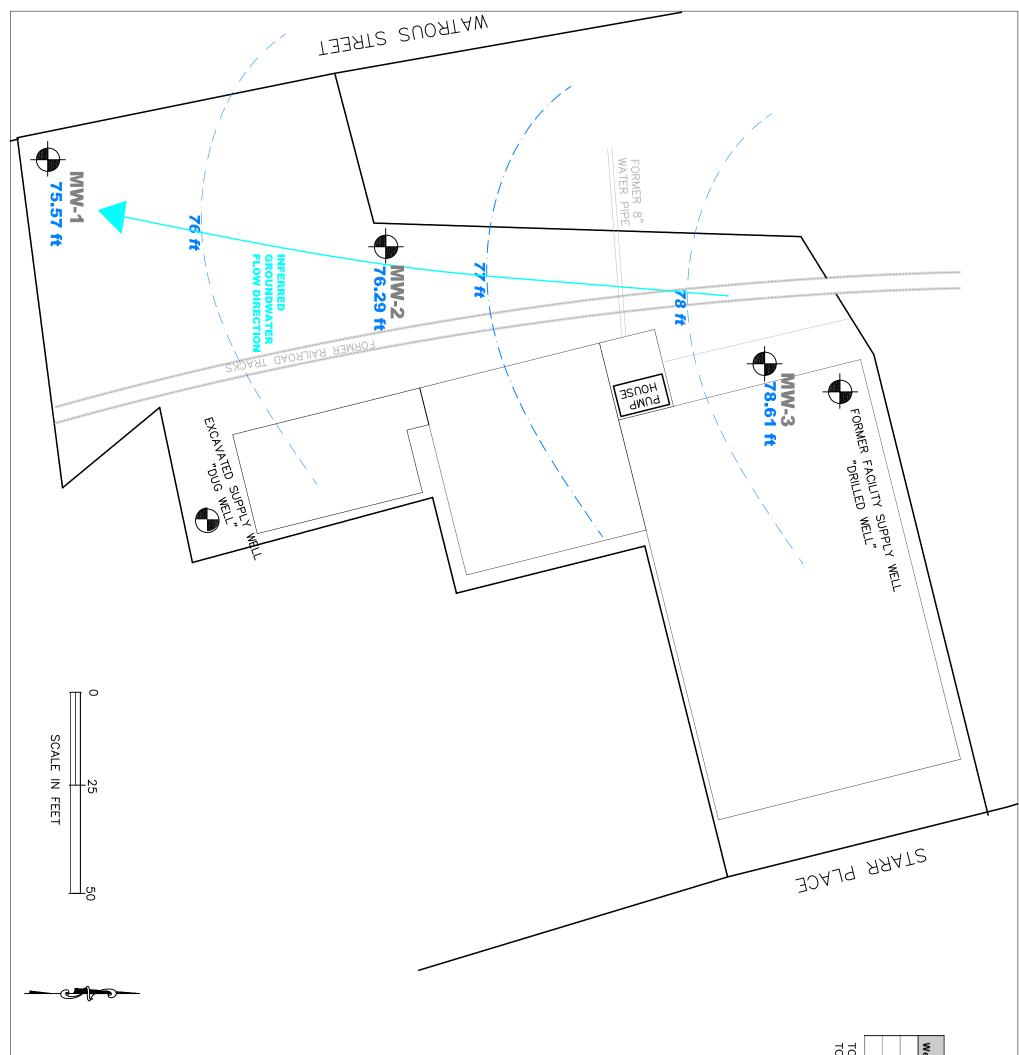
ND - Not Detected

NA - Not Analyzed

RSR - Remediation Standard Regulation

GWPC - Groundwater Protection Criteria

SWPC - Surface Water Protection Criteria RES VC - Residential Volatilization Criteria


I/C VC - Industrial / Commercial Volatilization Criteria

SU - Standard Units

umhos/cm - microsiemens per centimeter

ug/L - micrograms per liter

mg/L - milligrams per liter

GROUNDWATER ELEVATIONS

Well Number	Top of PVC Elevation (FT)	Depth to Water (FT)	Relative Elevation (FT)
MW-1	89.26	13.69	75.57
MW-2	90.23	13.94	76.29
MW-3	94.23	15.62	78.61

TOP OF PVC ELEVATIONS BASED PVC ELEVATION RELATIVE TO AN AN ARBITRARY BENCHMARK OF 100 FT

LEGEND

MONITORING WELL

GROUNDWATER CONTOUR

RELATIVE GROUNDWATER ELEVATION (FEET)

NOTES:

GROUNDWATER ELEVATIONS ARE RELATIVE AND BASED ON ARBITRARY DATUM

ELEVATION SURVEY CONDUCTED JULY 26, 2005

Cad File: Drawn By: Date: Date	Job.No. 12-6136 Designed By: BCC Checked By: JTO Scale:	GROUNDWAIER CONTOUR MAT	East Hampton, CT	13 Watrons Street	213 Court Street - Suite 900 Middletown, Connecticut 0545/ Fn:860-/04-4/60	No.	Tighex Bond
	cale:					No.	
Figure 3	1"=10'					Ву:	Revisions
3),					Date:	"

Table 4 **Summary of Groundwater Data**

Phase II ESA 103 Main Street East Hampton, CT

	Connectic	ut Remediation S	tandard Regulatio	ons (RSRs)	MONINA	MONIMA	MODELLO	140.101/4
Parameter	GWPC	SWPC	RES VC	I/C VC	MS MW-1 8/6/05	MS MW-2 8/3/05	MS MW-3 8/3/05	MS MW-4 8/4/05
pH (SU)*	NE	NE	NE	NE	6.59	6.83	6.11	6.78
Specific Conductance (umhos/cm)*	NE	NE	NE	NE	210	258	291	189
Total Metals (ug/L)								
Antimony	6	86,000	NE	NE	ND <6.0	10	ND <6.0	ND <6.0
Arsenic	50	4	NE	NE	ND <10.0	ND <10.0	ND <10.0	16
Beryllium	4	4	NE	NE	ND <1.0	ND <1.0	ND <1.0	ND <1.0
Cadmium	5	6	NE	NE	ND <1.0	ND <1.0	ND <1.0	ND <1.0
Chromium	50	1,200	NE	NE	5.6	6.6	ND <5.0	7.3
Copper	1,300	48	NE	NE	21	66	ND <10.0	28
Lead	15	13	NE	NE	11	70	ND <5.0	18
Nickel	100	880	NE	NE	11	ND <10.0	ND <10.0	ND <10.0
Mercury	2	0.4	NE	NE	ND <0.2	ND <0.2	ND <0.2	0.46
Selenium	50	50	NE	NE	ND <10.0	ND <10.0	ND <10.0	ND <10.0
Silver	36	12	NE	NE	ND <5	ND <5	ND <5	ND <5
Thallium	5	63	NE	NE	ND <10.0	ND <10.0	ND <10.0	ND <10.0
Zinc	5,000	123	NE	NE	ND <50	ND <50	ND <50	ND <50
Extractable Petroleum Hydrocarbons (CTETPH) (mg/L)	100	NE	NE	NE	ND <0.1	ND <0.1	ND <0.1	ND <0.1
Volatile Organic Compounds (ug/L)**								
Chloromethane	3	NE	390	5,500	1.00	0.51	ND <2.0	ND <2.0

Notes:

Values bolded and shaded exceed applicable standards

* - pH and specific conductance readings were averaged over the time period of sampling.

** - Only detected VOCs were included in the report. The full analyte list for EPA Method 8260 was performed.

NE - No Established Criteria

ND - Not Detected NA - Not Analyzed

RSR - Remediation Standard Regulation

GWPC - Groundwater Protection Criteria

SWPC - Surface Water Protection Criteria RES VC - Residential Volatilization Criteria

I/C VC - Industrial / Commercial Volatilization Criteria

SU - Standard Units

umhos/cm - microsiemens per centimeter

ug/L - micrograms per liter or parts per billion

mgL - milligeam per liter or parts per milliion

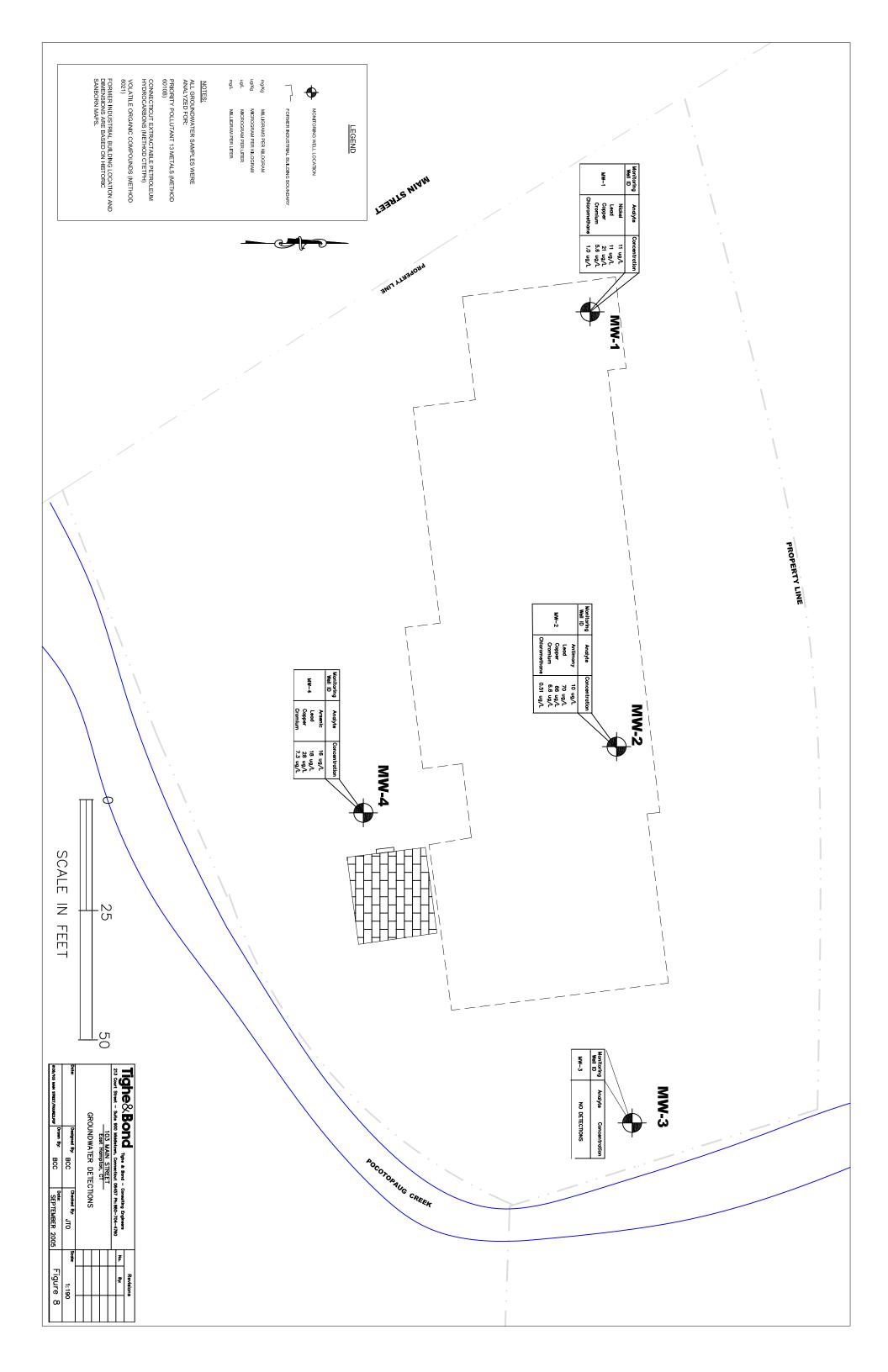


Table 4
Summary of Groundwater Analytical Data
Phase II Environmental Site Assessent
Water Tower Property
East Hampton, CT

Parameter	GWPC	SWPC	RES VC	I/C VC	ID Date	MW-1 6/5/2006	MW-Dup 6/5/2006	MW-2 6/5/2006	MW-3 6/5/2006	MW-4 6/5/2006
Volatile Organic Compounds (ug/L)										
Methyl tert-butyl Ether (MTBE)	100	NE	21,000	50,000		1.1	1.1	ND	ND	ND
Semi-Volatile Organic Compounds (ug/L)	Varies	Varies	Varies	Varies		ND	ND	ND	ND	ND
Extractable TPH (CTETPH) (mg/L)	0.1	NE	NE	NE		0.15	0.15	0.13	0.14	ND<0.1
Priority Pollutant 13 Metals (ug/L)										
Arsenic	50	4	NE	NE		J<10	J<10	ND<10	ND<10	ND<10
Barium	1,000	NE	NE	NE		42	48	42	20	73
Cadmium	5	6	NE	NE		0.53	0.62	0.52	ND<1.0	ND<1.0
Chromium	50	1,200	NE	NE		4.5	5.3	1.2	J<5.0	ND
Lead	15	13	NE	NE		9.1	12	20	6.7	3.1
Mercury (7471 Method)	2	0.4	NE	NE		ND<0.2	ND<0.2	ND<0.2	ND<0.2	ND<0.2
Selenium	50	50	NE	NE		6.5	5.7	6.1	ND<1.0	ND<1.0
Silver	36	12	NE	NE		1.6	1.5	ND	J<5.0	ND<1.0

Highlighted text - Concentration exceeds at least one indicated RSR criteria.

Only detected Constituents of Concern (COC) are included in the table.

Numeric criteria defined by the Connecticut Remediation Standard Regulations (RSRs; January 1996) and subsequent additions/modifications.

Extractable Petroleum Hydrocarbons via Connecticut ETPH Method.

Volatile Organic Compounds via EPA Method 8260.

Priortity Pollutant 13 Metals via EPA Method 6010B and 7470A

ND - Not Detected to the indicated limit.

NE - No RSR Criteria Established.

J - Concentration above minimum detection limit (MDL) but below reporting limit. Approximated concentration provided in laboratory reports.

SWPC - Surface Water Protection Criteria

GWPC- Ground Water Protection Ctiteria

RES VC - Residential Volatilization Criteria

I/C VC - Industrial/Commericial Volatilization Criteria

ug/L - micrograms per liter

mg/L - milligrams per liter

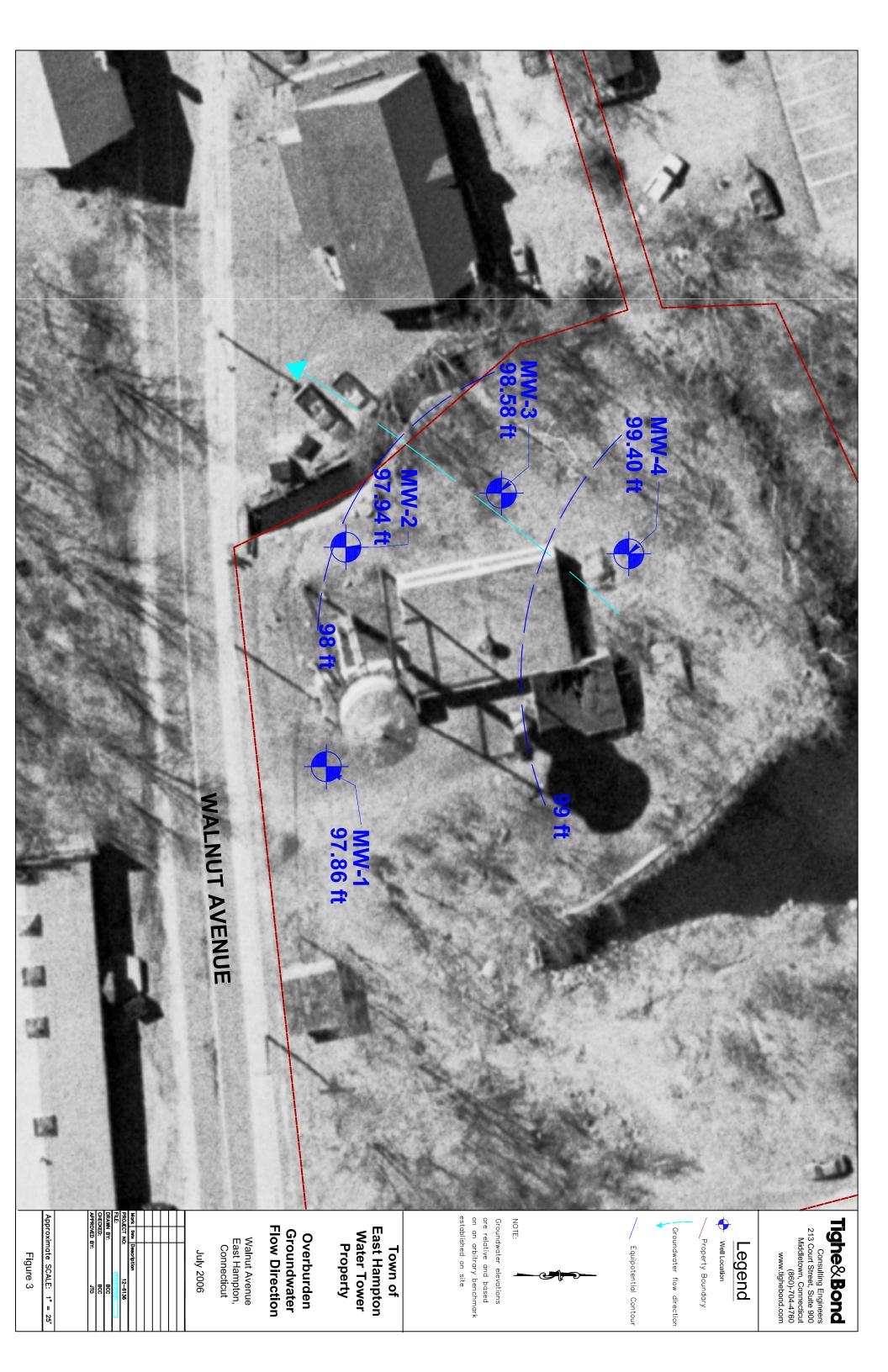


Table 1 Significant Environmental Hazard Report East Hampton Village Center

	National Primary Drinking Water Regulations	CTDPH Action Level	GWPC	2 Bevin Court	45 Chatham Fields Road	47 Chatham Field Road	64 Main Street	88 Main Street	91 Main Street	95 Main Street	101 Main Street	105 Main Street	107 Main Street	108 Main Street	111 Main Street	112 Main Street	116 Main Street	6 Niles Street
Date Sampled				11/2/2005	10/27/2005	10/27/2005	10/27/2005 1	10/27/2005	10/27/2005	10/27/2005	10/27/2005	10/27/2005	10/27/2005	10/27/2005	10/27/2005	10/27/2005	10/27/2005	10/27/2005
VOCs via EPA Method 524.2 1 (μg/L)																		
Toluene	1,000	1,000	1,000	ND	ND	ND		ND	ND			ND	ND	ND	ND	ND	ND	ND
Methyl Tert Butyl Ethylene (MTBE)	NS	70	100	ND	ND	ND		J<0.5	J<0.5			J<0.5	0.6	ND	0.6	J<0.5	0.7	J<0.5
Methylene Chloride	NS	NS	5	ND	ND	ND		ND	ND			ND	ND	ND	ND	ND	ND	ND
Trichloroethylene	5	5	5	ND	ND	ND		ND	ND			ND	ND	ND	ND	ND	ND	ND
Chloroform	80 ²	NS	6	ND	ND	ND		ND	ND			ND	ND	ND	ND	ND	ND	ND
Bromoform	80 ²	NS	4	ND	ND	ND		0.9	0.9			ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	80 ²	NS	NS	ND	ND	ND		0.7	8.0			ND	ND	ND	ND	ND	ND	ND
Bromodichoromethane	80 ²	NS	0.56	ND	ND	ND		J<0.5	0.5			ND	ND	ND	ND	ND	ND	ND
Chloroethane	NS	NS	NS	ND	ND	ND		ND	ND			ND	ND	ND	ND	ND	ND	ND
Trichloroflouroethene	NS	NS	20,000	ND	ND	ND		ND	ND			ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	70	NS	70					J<0.5	J<0.5			ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene	5	5	5	ND	ND	ND		ND	ND			ND	ND	ND	ND	ND	ND	ND
Pesticides via EPA Method 505 ¹ (μg/L)																		
Alpha Chlordane	2	0.3	0.3	ND<0.008														
Gamma Chlordane	2	0.3	0.3	ND<0.006														
Dieldrin	NS	0.03	0.002	0.060														
Trans-nonachlor	NS	NS	NS	ND<0.006														
Metals via EPA Method 200.8 (µg/L)																		
Lead	15	NS	15	ND<3		ND<3	ND<3	ND<3	ND<3	ND<3	ND<3	ND<3		ND<3	ND<3	ND<3	4	ND<3
Antimony	6	NS	6	ND<5		ND<5	ND<5	ND<5	ND<5			ND<5		ND<5	ND<5	ND<5	ND<5	ND<5

- 1 Only detected analytes listed
- 2 Total trihalomethane standard applies.

GWPC - The Connecticut Remediation Standard Regulations Groundwater Protection Criteria

CTDPH - Connecticut Department of Public Health Action Limit for Private Wells, Updated March 2004

National Primary Drinking Water Regulations, update May 2005
Results with border and bold typeface indicate an exceedance of one or more drinking water standards

All results reported in micrograms per liter

VOC - Volatile Organic Compounds

NS - No standard

J - Constituent detected below reporting limit

ND - Not detected. Note: No reporting limits were provided for analytical method 524.2.

All results provided by the Chatham Health Department

Table 1 (continued)
Significant Environmental Hazard Report
East Hampton Village Center

	National Primary Drinking Water Regulations	CTDPH Action Level			5 Railroad Avenue	7 Railroad Avenue	9 Railroad Avenue	1 Starr Place	2 Starr Place	3 Starr Place	4 Starr Place	5 Starr Place	6 Starr Place	7 Starr Place	8 Starr Place	9 Starr Place	10 Starr Place
Date Sampled				12/8/2005	10/13/2005	10/13/2005	10/13/2005	11/2/2005	10/13/2005	10/13/2005	6/30/2006	10/13/2005	10/13/2005	10/13/2005	10/13/2005	10/13/2005	6/30/2006
VOCs via EPA Method 524.2 1 (μg/L) Toluene	1,000	1,000	1,000		ND			ND	0.8	ND	ND	ND	1.4		ND		ND
Methyl Tert Butyl Ethylene (MTBE)	NS	70	100		0.5			ND	ND	ND	ND	ND	J<0.5		ND		ND
Methylene Chloride	NS	NS	5		ND			ND	ND	ND	ND	ND	ND		J<0.5		ND
Trichloroethylene	5	5	5		ND			ND	ND	ND	ND	ND	ND		J<0.5		ND
Chloroform	80 ²	NS	6		ND			ND	ND	ND	ND	ND	ND		ND		ND
Bromoform	80 ²	NS	4		ND			ND	ND	ND	ND	ND	ND		ND		ND
Dibromochloromethane	80 ²	NS	NS		ND			ND	ND	ND	J<0.5	ND	ND		ND		ND
Bromodichoromethane	80 ²	NS	0.56		ND			ND	ND	ND	J<0.5	ND	ND		ND		ND
Chloroethane	NS	NS	NS		ND			ND	ND	ND	ND	ND	ND		ND		ND
Trichloroflouroethene	NS	NS	#####		ND			ND	ND	ND	ND	ND	ND		ND		ND
cis-1,2-Dichloroethylene	70	NS	70		ND			ND	ND	ND	ND	ND	ND		ND		ND
Tetrachloroethylene	5	5	5		ND			ND	J<0.5	ND	ND	ND	ND		ND		ND
Pesticides via EPA Method 505 1 (µg/L)																	
Alpha Chlordane	2	0.3	0.3					ND<0.008		ND<0.008				ND<0.008			
Gamma Chlordane	2	0.3	0.3		ND<0.006			ND<0.006			ND<0.006					ND<0.006	
Dieldrin	NS	0.03		ND<0.006				ND<0.006	0.333		ND<0.006			ND<0.006			ND<0.008
Trans-nonachlor	NS	NS	NS	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006
Metals via EPA Method 200.8 (μg/L)																	
Lead	15	NS	15					4									
Antimony	6	NS	6					ND<3									

- 1 Only detected analytes listed
- 2 Total trihalomethane standard applies.

GWPC - The Connecticut Remediation Standard Regulations Groundwater Protection Criteria

CTDPH - Connecticut Department of Public Health Action Limit for Private Wells, Updated March 2004

National Primary Drinking Water Regulations, update May 2005

Results with border and bold typeface indicate an exceedance of one or more drinking water standards

All results reported in micrograms per liter

VOC - Volatile Organic Compounds

NS - No standard

J - Constituent detected below reporting limit

ND - Not detected. Note: No reporting limits were provided for analytical method 524.2.

All results provided by the Chatham Health Department

Table 1 (continued)
Significant Environmental Hazard Report
East Hampton Village Center

	National Primary Drinking Water Regulations	TDPH	GWPC	11 Starr Place	15 Summit Street	16 Summit Street	18 Summit Street	19 Summit Street	23 Summit Street	8 Walnut Avenue	9 Walnut Avenue	10 Walnut Avenue	12 Walnut Avenue	17 Walnut Avenue	13 Watrous Street Interior Well	13 Watrous Street Exterior Well	17 Watrous Street	22 Watrous Street	29 Watrous Street
Date Sampled				10/13/2005	10/13/2005	10/13/2005	10/13/2005	10/13/2005	11/2/2005	11/2/2005	10/13/2005	5 10/13/2005	10/13/2005	10/13/2005	8/10/2005	7/12/2005	7/12/2005	6/30/2006	6/30/2006
VOCs via EPA Method 524.2 1 (μg/L) Toluene Methyl Tert Butyl Ethylene (MTBE)	1,000 NS	1,000 70	1,000 100		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND			ND ND	ND ND	ND ND	ND J<0.5	ND J<0.5
Methylene Chloride Trichloroethylene	NS 5	NS 5	5 5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND			J<0.5 3.9	ND ND	ND 2.3	ND ND	ND J<0.5
Chloroform Bromoform	80 ² 80 ²	NS NS	6 4		ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.6	ND ND	ND ND			J<0.5 ND	ND ND	ND ND	2.6 1.8	ND ND
Dibromochloromethane Bromodichoromethane	80 ² 80 ²	NS NS	NS 0.56		ND ND	ND ND	ND ND	ND ND	ND ND	0.6 J<0.5	ND ND	ND ND			ND ND	ND ND	ND ND	3.5 3.7	ND ND
Chloroethane Trichloroflouroethene cis-1,2-Dichloroethylene	NS NS 70	NS NS NS	NS #### 70		ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND J<0.5	ND ND ND	ND ND ND			ND 7.8 ND	ND ND ND	ND ND 0.6	J<0.5 ND 0.6	ND ND ND
Tetrachloroethylene	5	5	5		ND	ND	ND	ND	ND	ND	ND	ND			J<0.5	ND	ND	ND	ND
Pesticides via EPA Method 505 ¹ (μg/L) Alpha Chlordane	2	0.3	0.3	ND<0.008	3.66	0.346	ND<0.008	0.38	ND<0.008	ND<0.008	ND<0.008	ND<0.008	ND<0.008	ND<0.008	0.056	ND	ND<0.008		ND<0.006
Gamma Chlordane Dieldrin	2 NS	0.3 0.03	0.3 0	ND<0.006 ND<0.008	ND<0.006 6.52	2.05	ND<0.006 ND<0.008	2.04	ND<0.006 ND<0.008	ND<0.008	ND<0.006 ND<0.008	ND<0.008	ND<0.008	ND<0.008	0.056 1.063	ND ND	ND<0.006 0.096		ND<0.006 0.091
Trans-nonachlor	NS	NS	NS	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	ND<0.006	0.03	ND	ND<0.006		ND<0.006
Metals via EPA Method 200.8 (μg/L) Lead Antimony	15 6	NS NS	15 6							ND<3 ND<3									

- 1 Only detected analytes listed
- 2 Total trihalomethane standard applies.

GWPC - The Connecticut Remediation Standard Regulations Groundwater Protection Criteria

CTDPH - Connecticut Department of Public Health Action Limit for Private Wells, Updated March 2004 National Primary Drinking Water Regulations, update May 2005

Results with border and bold typeface indicate an exceedance of one or more drinking water standards

All results reported in micrograms per liter VOC - Volatile Organic Compounds

NS - No standard

J - Constituent detected below reporting limit

ND - Not detected. Note: No reporting limits were provided for analytical method 524.2.

All results provided by the Chatham Health Department

Appendix D

Soil Boring Logs & Monitoring Well Completion Reports

BORING LOG

PROJECT: East Hampton Brankeids Pr LOCATION: East Hampton, CT

SITE ID:	FO-01
SHEET:	of
DROTTOMA	0 0 11 40 20 0 .

HEET:	of	
ROJECT N	0: 2011 0037 AII	
EATHER:	Sunny 60's	

CONTRACTOR: Glacies OPERATOR:	BORING LOCATION: Front of School new Gazeloo DATE STARTED: 4/16/15
D.Cook DRILLING METHOD: SAMPLING METHOD: 5' Macro Core	DATE STARTED: 4/16/15 DATE & TIME COMPLETED: 4/16/15 DEPTH TO SATURATED ZONE: 100 encountered
HAMMER WT:HAMMER FALL (IN)	SAMPLE PREFIX:

-	***					=					
START	ILLING DET	REC/	DEPTH		1	MATERIAL DESCRIPTION			· A	NALYTICAL SA	MPLES
DEPTH (FT)	BLOWS 6"	PEN (IN)	RANGE (FT)		I	DESCRIPTION	PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
0	NA	42/60	0-	moist, lu	use, no odos	n. F-m Sand. It.l. argonics. boun 7.542 4/3	ND	TS			
J			0.3-	F-C SA Moist, Co	ND; Ith;	silt, tr. Poliverized Stone Nov. brown 7.542 5/4	NO	SP			
5	1	10/	6	Refusar			NO	31			
		Carrier of the carrier of the carrier		drine p	t, Confirma	obstruction with					
٥	WA	NA	6	Refusal	at 6'						
	W.			off set, drive po	Confirm	obstruction with					
0	NA	M	6	fetuss1	at 61					** ** ** ** ** ** ** ** ** ** ** ** **	
				low grade bedrak. refussi.	cound in to	cotz. biethe schist of the point of					
	ORING		ROPINICA	METHOD	BORING	REMARKS					
DIA	METER 2.5		Geop		DEPTH (2	Field Instrument= If Offsets back filled w/ 1 TIGER PID Used 651	natre p	naterial	2 300	efforts used to	confirm.
Trace (tr) Little (ltl)	ONS USED: 0 to 10% 10 to 20%		Some (sm) And	20 to 35% 35 to 50%		Field Decon:	evice	. 7			
EXAMPLE I SAND, F-I Loose. No Reviewed I	odor.	N: gular grave	l; ltl silt; tr c	clay; (10R 5/4),	wet at 7 ft.	Concrete/Asphalt Bentonite Grout/Chips Native Material Other	1	o		See Monitoring Completion Re	

MONITORING WELL COMPLETION REPORT

GENERAL INFORMATION	
Project Name: <u>East Humpton Brownfields</u>	Site ID (Boring/Well ID): FO~ Ø1
Project Location: East Hampton, CT	Project No.: 20110037.A11
F&O Engineer/Geologist: D.Cock	Ground Surface Elevation:
Date of Completion: 4/16/15	Permit #:
Boring Location: Front of School near Gazebo	E1 Top of Steel Casing:
Drilling Contractor/Name: Glacier	E1 Top of PVC Casing:
Drilling Method: direct push	Measuring Point: TPS / PVC
WELL CONSTRUCTION	Well Cover (see codes):
Well Casing/Riser Sump (below screen)	PROTECTIVE CASING
Diameter: 1.5 in. Diameter: 1.5 in.	Diameter:in. Type: Road Box / Stand Pipe
Type:	Stick-up:ft Depth to Bottom:ft
Stick-up: 0 ft. Length: 2.5 in.	Scal Material: Concrete
SCREEN INTERVALS	
Screen Interval: 6-3 ft Diameter:	1.5in. Slot Size:
Description: PVC Other:	
Type: Perforated Slotted / Wire-Wrap / Other:	
BOREHOLE	
Diameter: 4,5in. Total Boring Depth: 6ft.	Refusal: (y)/ n Depth:ft.
ANNULAR FILL	
SURFACE SEAL (Approximate volumes i	f available)
Interval: 1-0 ft. Tremied: Y/N Volume: 42 bags	s Description: Concrete / Other:
BACKFILL.	
Interval:ft. Tremied: Y / N Volume:bags	S Description: Bentonite Grout / Native Material / Sand / Other:
LOWER SEAL	
Interval: 2-1 ft. Tremied: Y / Volume: 4 bags	Description: Bentonite Pellets / Other:
FILTER	
Interval: 6-2 ft. Tremied: Y/N Volume: 1/2 bags	Description: Sand Filter (type:) / Other:
Lower Backfill	
Interval:ft. Tremied: Y / N Volume:bags	Description: Bentonite Grout / Native Material / Sand / Other:
MONITORING WELL DEVELOPMENT*	
Development Method: Surge Block / Submersible Pump / Peristaltic Pump	
Date: no water in well.	not developed

^{*}See Monitoring Well Development Data Sheet for details

A A	
	FUSS&O'NEILL
	Disciplines to Deliver

CONTRACTOR: Glacier

F&O REPRESENTATIVE:____

SAMPLING METHOD:____

OPERATOR:_

BORING LOG PROJECT:

SITE ID:

SHEET:__

PROJECT NO: 20116037.All

WEATHER: Sony Go's

of

DRILLING METHOD: Direct Push

LOCATION:

D.Cook

BORING LOCATION: 99 Main St. the Corner School
DATE STARTED: 4/16/15
DATE & TIME COMPLETED: 4/16/15

DEPTH TO SATURATED ZONE:_

START	LLING DET	AILS REC/	DEPTH	_		MATERIAL DESCRIPT	TION			A	NALYTICAL SA	MPLES
DEPTH (FT)	BLOWS 6"	PEN (IN)	RANGE (FT)		1	DESCRIPTION		PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS &
0	NA	28/60	0.3	dry, losse	ino odor.	brown 7.5 y	4/3	NO	TS			
		1	0.3-	a Reservation		brown 7.542		~0	SP			
5		160	5-	Same	As Above	, wet at	9.	ND	SP	ng Pagaman Nga Pagaman Ang Pagaman ng Pagama	Arteria de la composition della composition dell	t the second of the second of the second
0	ورون و و و و و و و و و و و و و و و و و و	52/	10-		As Abov	-		NO	SP			
5	J	42/	15- 19	Same A	s Above			No	SP		TO STATE OF THE ST	er ete et al ut at at at at at a
DIA	PRING METER 2.5	I	BORING M		BORING DEPTH	REMARKS Field Instrument	=	If refusal is ea	ncountered,	describe all e	efforts used to	confirm.
DPORTIONS USED: e (tr) 0 to 10% Some (sm) 20 to 35%					19	Field Decon: Ye	No / Dedicated	Screen				
MPLE D	ESCRIPTION A; sm f ang odor.	N: ular grave	And ; ltl silt; tr c	35 to 50% lay; (10R 5/4)	wet at 7 ft.	BACKFILL Concrete/Asphal Bentonite Grout/ Native Material Other	Chips	r r	o	(ee Monitoring Completion Re	

MONITORING WELL COMPLETION REPORT

GENERAL INFORMATION							
Project Name: <u>Fast Hampton Brownhelds</u>	Site ID (Boring/Well ID): F0-02						
Project Location: East Hampton, CT	Project No.:						
F&O Engineer/Geologist: D.Cook	Ground Surface Elevation:						
Date of Completion: 4/16/15	Permit #:						
Boring Location: 94 Main St. the Corner school	E1 Top of Steel Casing:						
Drilling Contractor/Name: Glacier	E1 Top of PVC Casing:						
Drilling Method: direct Push	Measuring Point: TPS / PVC						
WELL CONSTRUCTION	Well Cover (see codes):						
WELL CASING/RISER SUMP (below screen) Diameter: 1.5 in. Diameter: 1.5 Type: fvc Stick-up: 0 ft. Length: 2.5 in.	PROTECTIVE CASING Diameter:						
SCREEN INTERVALS							
Screen Interval: 16-6 ft Diameter: 1.5	in. Slot Size: 0.01						
Description: Other:							
Type: Perforated / Notted / Wire-Wrap / Other:	vii .						
BOREHOLE Diameter: 4.5 in. Total Boring Depth: 16 ft. ANNULAR FILL	Refusal: y/60 Depth:ft.						
SURFACE SEAL (Approximate volumes if avai	lable)						
Interval:ft. Tremied: Y / \tilde{\Omega} Volume:bags	Description: Concrete / Other:						
Interval: 2-1 ft. Tremied: Y N Volume:bags	Description: Bentonite Grout / Native Material / Sand / Other:						
Lower Seal							
Interval: 4-2 ft. Tremied: Y Nolume: 1 bags	Description: Bentonite Pellets / Other:						
FILTER							
interval: 16-4 ft. Tremied: Y / N Volume: 2 bags	Description: Sand Filter (type:) / Other:						
LOWER BACKFILL	6						
nterval:ft. Tremied: Y / N Volume:bags	Description: Bentonite Grout / Native Material / Sand / Other:						
MONITORING WELL DEVELOPMENT*							
Development Method: Surge Block / Submersible Pump / Peristaltic Pump / Wa	atera / Bailer / Other						

*See Monitoring Well Development Data Sheet for details

BORING LOG

PROJECT:

LOCATION:

SITE ID: FO - 0

SHEET: lof!

PROJECT NO: 20110037.411
WEATHER: Syry 60's

CONTRACTOR: Glacier	BORING LOCATION: Corner of Barton Hilled a Mainst
	DATE STARTED: 4/16/15
F&O REPRESENTATIVE: D.Cook	DATE & TIME COMPLETED: 4/16/5
DRILLING METHOD: Direct Push	DEPTH TO SATURATED ZONE: 28
SAMPLING METHOD: 5' Macro Core	
HAMMER WT:HAMMER FALL (IN)	SAMPLE PREFIX:

DRI	LLING DET	AILS			М	ATERIAL DESCRIPTION				NALYTICAL SA	MPI ES
START DEPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		DI	ESCRIPTION	PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
0	NA	30/60	0-	lan nala	1	r. Very most, louse 12 5/2	NO	SM			
1		1	25- 5	SILT; LA	onun ts	d, very moist, Compact 184/3	ND	ML			
5		46/	0	Same A	s Abore		ND	mL	er en	4-10, 10, 10, 10, 10, 10, 11, 11, 11, 14, 14, 14, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16	
1		1	7-10			nursted nucle, troilt. 5/6, wet at tip	ND	38			
lo		51/60		F-C SAN		curte. net, loose, no alor	Mo	58	the transfer on the property of		
1	J	+	13-	F-C SAI Wet, Fire	n, no odor	boun 7.542 5/4	No	54			
	ORING		BORING	METHOD	BORING	REMARKS					_
DIA	METER 2.5			probe	DEPTH 18	Field Instrument= 24" from Ma/KLd Phon TIGER PID VIEW to Field Decon: Yes/No/Dedicated:	e line	. Minim	m req	efforts used t	o confirm.
Trace (tr) Little (ltl) EXAMPLE	odor.	DN: gular grav	Some (sm) And el; ltl silt; tr	20 to 35% 35 to 50% clay; (10R 5/4)	, wet at 7 ft.	BACKFILL		To To To To	(See Monitorin Completion R	

MONITORING WELL COMPLETION REPORT

GENERAL INFORMATION	
Project Name: East Hampton Brown helds	Site ID (Boring/Well ID): FO -Ø3
Project Location: East Hampton, CT	Project No.: 2011 0037.411
F&O Engineer/Geologist: D. Cook	Ground Surface Elevation:
Date of Completion: 4/16/15	Permit #:
Boring Location: Corner of Bytan Hill pl & Min spreet	E1 Top of Steel Casing:
Drilling Contractor/Name: Glair	E1 Top of PVC Casing:
Drilling Method: direct fush	Measuring Point: TPS / PVC
WELL CONSTRUCTION	Well Cover (see codes):
Well Casing/Riser Sump (below screen)	PROTECTIVE CASING
Diameter: 1.5 in. Diameter: 1.5 in.	Diameter:
Type: PVC Type: PVC	Stick-up:ft Depth to Bottom:ft
Stick-up:ft. Length:in.	Seal Material: Concide
SCREEN INTERVALS	
Screen Interval: 15-5 ft Diameter: 1.5	in. Slot Size:
Description: PVC Other:	
Type: Perforated / Slotted / Wire-Wrap / Other:	
BOREHOLE	
Diameter: 4.5 in. Total Boring Depth: 15 ft.	Refusal: y / Depth: ft.
ANNULAR FILL	
SURFACE SEAL (Approximate volumes if avai	lable)
Interval: 1-0 ft. Tremied: Y / N Volume: 1/2 bags	Description Concrete / Other:
BACKFILL.	
Interval:ft. Tremied: Y / N Volume:bags	Description: Bentonite Grout / Native Material / Sand /
Lower Seal	Other:
7 1	
FILTER Tremied: Y / N Volume:bags	Description: Bentonite Pellets / Other:
.77	1
LOWER BACKFILL	Description: Sand Filter (type:) / Other:
Interval:ft. Tremied: Y / N Volume:bags	Description: Bentonite Grout / Native Material / Sand / Other:
MONITORING WELL DEVELOPMENT*	
Development Method: Surge Block / Submersible Pump / Peristaltic Pump / Wa	atera / Bailer / Other
Date: 4/17/15	

^{*}See Monitoring Well Development Data Sheet for details

BORING LOG

PROJECT: East Hampton Bounfields

LOCATION: East Hampton, CT

SITE ID: Fo-04

SHEET: lof!

PROJECT NO: Zoil@37,411

WEATHER: Clear 605

CONTRACTOR: GIGGGE	BORING LOCATION: Watrows Ave, asside of old Grehouse DATE STARTED: 4/16/15
F&O REPRESENTATIVE: D.Cook	DATE & TIME COMPLETED: 4/16/15
DRILLING METHOD: Direct Push	DEPTH TO SATURATED ZONE: not encountered
SAMPLING METHOD: 5' Macro Core	DOTE.
HAMMER WT:HAMMER FALL (IN)	SAMPLE PREFIX:

DRI	LLING DET	AILS			N	IATERIAL DESCRIPTION					
START DEPTH	BLOWS	REC/ PEN	DEPTH RANGE		19180-19-10			LITHO-	SAMPLE	DEPTH	
(FT)	6"	(IN)	(FT)		D	ESCRIPTION	PID	LOGIC CODE	NO. & TIME	INTERVAL (FT)	JARS & PRESERV.
0	NA	31/100	6.25	Asphalt	7		NA	A3			
1		1			10; sm sill 1542 5/4	-, Maist loose, no oder	wo	Sm			
5		10/	5 - 5.5	F-m SAN	10; tr. 5:14	, most loose no odor	ND	54	No. Participated Fig. I was seen than the project and place in the project and		
1			5.5-	Poliverize refusal a	d rock: a	tz biotite schist	MO	Rx			
, , , , , , , , , , , , , , , , , , , ,		A STATE OF THE STATE OF			to Cont	Ein obstruction		77777 (F)	et i for a pri limani a sistema di sin		
0	NA	M	0-6	Perusa1	at 4.5'						
				off set	Confirm	n obstruction with	- 1 S				
				drive 8	Paint	C COMMONDA WITH					# 1 1
en yer harriga kalan aray kalan gangan gang		and the second						market and the same	and the last section of the control of		
0	M	NA	0-6	refusal	a+ 6°			Bec.			
		2									
										15.	22724112
						22.00					
	ORING METER]	BORING	METHOD	BORING	REMARKS					
DIA	2.5		Geop	0.00	DEPTH	Field Instrument= I OH sets back filled w	f refusal is e	ncountered,	describe all	efforts used to	confirm.
						Plugged w/ Concrete at s	orfe ce			, Dandl \$	
						PID TIBER Used for Field Decon: KEY No / Dedicated I	- Scree	nins 5	110		
PROPORTIO Trace (tr) Little (ltl) EXAMPLE I SAND, F-I Loose. No Reviewed E	0 to 10% 10 to 20% DESCRIPTIO M; sm f ang odor.	N: ular grave	Some (sm) And l; ltl silt; tr c	20 to 35% 35 to 50% lay; (10R 5/4),	wet at 7 ft.	BACKFILL Concrete/Asphalt Bentonite Grout/Chips Native Material Other	1 1	Γο Γο Γο	(See Monitoring Completion Re	
I.											

MONITORING WELL COMPLETION REPORT

GENERAL INFORMATION	
Project Name: East Hampton Brown fields	Site ID (Boring/Well ID): Fo - Ø4
Project Location: East Hampton, CT	Project No.: Zollowst. All
F&O Engineer/Geologist: D. Cook	Ground Surface Elevation:
Date of Completion: 4/16/15	Permit #:
Boring Location: watrows Ave, adjacent "old fire Mossi	E1 Top of Steel Casing:
Drilling Contractor/Name: Glacier	E1 Top of PVC Casing:
Drilling Method: direct Rish	Measuring Point: TPS / PVC
WELL CONSTRUCTION	Well Cover (see codes):
Well Casing/Riser Sump (below screen)	PROTECTIVE CASING
Diameter: 1,5 in. Diameter: 1,5 in.	Diameter:in. Type: Road Box / Stand Pipe
Type:	Stick-up:ft Depth to Bottom:ft
Stick-up: 0 ft. Length: 2.5 in.	Seal Material: Concrete
SCREEN INTERVALS	
Screen Interval: 6-4 ft Diameter: 1.5	in. Slot Size: O.O!
Description: PVO/ Other:	
Type: Perforated / Slotted / Wire-Wrap / Other:	
BOREHOLE	
Diameter: 4.5 in. Total Boring Depth: 6 ft.	Refusal: (y) n Depth: 6 ft.
ANNULAR FILL	
SURFACE SEAL (Approximate volumes if avai	lable)
Interval: 1-0 ft. Tremied: Y / Volume: 12 bags	Description: Concrete/ Other:
BACKFILL	
Interval:ft. Tremied: Y / N Volume:bags	Description: Bentonite Grout / Native Material / Sand / Other:
LOWER SEAL	
Interval: 2-1 ft. Tremied: Y / N Volume: 12 bags	Description Bentonite Pellets / Other:
FILTER	
Interval: 6-2 ft. Tremied: Y/N Volume: 2 bags	Description: Sand Filter (type:) / Other:
Lower Backfill	
Interval:ft. Tremied: Y / N Volume:bags	Description: Bentonite Grout / Native Material / Sand / Other:
MONITORING WELL DEVELOPMENT*	
Development Method: Surge Block / Submersible Pump / Peristaltic Pump / W	atera / Bailer / Other
Date: no water in well, no+ de	veloped

*See Monitoring Well Development Data Sheet for details

BORING LOG

PROJECT: East Hampton Brownfels

LOCATION: East Hampton, CT

SITE ID: F0-05
SHEET: l of l

PROJECT NO: 20110037.41)
WEATHER: Cloudy 50's

CONTRACTOR: Glacier OPERATOR:	BORING LOCATION: Luglout Ave DATE STARTED: 4/1415
F&O REPRESENTATIVE: D.Cook	DATE & TIME COMPLETED: 4/17/15
DRILLING METHOD: Direct Push	DEPTH TO SATURATED ZONE: 23
SAMPLING METHOD: 5' Macro Core	
HAMMER WT: HAMMER FALL (IN)	SAMPLE PREELY:

	LLING DET					ATERIAL DESCRIPTION			A	NALYTICAL SA	MPLES
TART EPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		D	ESCRIPTION	PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESER
0	MA	10/	0.5	Coal a no oder.	Conl ash, black h	: moist very losse syr 25/1	NO	PI			
		1	0.5- 5	F-C SAN	00; ltl sil 3; 1005e, no	+, to purented our odor, brown 754251	3 NO	SP			
5	Y	50/	5-10	F-CSAN Compact.	no odor, b	wized rock, het,	NO	26			
40. NO. 201. NO. 2 CO.								* * * * * * * * * * * * * * * * * * *			
		ere (ere e s)h									
						3					
		etaergaet deuts ook as oo oo oo oo o		ar de seculiar e e e e e e e e e e e e e e e e e e e							
			A A		9				2002/04/04/20		
									1111 (1/2016-14) dawn		
50.55						2					
BORING DIAMETER BORING METHOD DEPTH 2.5 Geoprobe 10			DEPTH	REMARKS Field Instrument= If refusal is encountered, describe all efforts used to confirm					o confirm		
POPTY	ONS USED:					TIGER 10 VSEO Field Decon: Yes/No/Dedicar	For fial	Sinen.	75 56 (
(tr) (ltl) MPLE I ID, F-	0 to 10% 10 to 20% DESCRIPTION	ON: gular grav	Some (sm) And el; ltl silt; tr	20 to 35% 35 to 50% clay; (10R 5/4),	, wet at 7 ft.			То То То	(See Monitorin Completion R	
	y Staff:					Other		То		-	and the same of th

MONITORING WELL COMPLETION REPORT

GENERAL INFORMATION	
Project Name: East Hampton Boun fillds	Site ID (Boring/Well ID): Fo - \$\tilde{\Omega}5
Project Location: East Humpton, CT	Project No.:
F&O Engineer/Geologist:	Ground Surface Elevation:
Date of Completion: 4/17/15	Permit #:
Boring Location: Walnut Ave.	E1 Top of Steel Casing:
Drilling Contractor/Name: Glacier	E1 Top of PVC Casing:
Drilling Method: direct Push	Measuring Point: TPS / PVC
WELL CONSTRUCTION	Well Cover (see codes):
Well Casing/Riser Sump (below screen)	PROTECTIVE CASING
Diameter:i.5in. Diameter:i.5in.	Diameter:in. Type Road Box / Stand Pipe
Type:	Stick-up:ft Depth to Bottom:ft
Stick-up:ft. Length:fn.	Seal Material: Concrete
SCREEN INTERVALS	
Screen Interval:ft Diameter:1.5	in. Slot Size:0.0 l
Description: PVC Other:	
Type: Perforated Slotted Wire-Wrap / Other:	
BOREHOLE	
Diameter: 4,5 in. Total Boring Depth: 11 ft.	Refusal: 🕠 n Depth:ft.
ANNULAR FILL	
SURFACE SEAL (Approximate volumes if avai	lable)
Interval: 0,5-0 ft. Tremied: Y N Volume: 12 bags	Description: Concrete / Other:
BACKFILL.	
Interval:ft. Tremied: Y / N Volume:bags	Description: Bentonite Grout / Native Material / Sand / Other:
LOWER SEAL	
Interval: 1-0.5 ft. Tremied: Y / N Volume: 4 bags	Description: Bentonite Pellets / Other:
FILTER	
Interval: 11-1 ft. Tremied: Y / N Volume: 2 bags	Description: Sand Filter (type:) / Other:
Lower Backfill	
Interval:ft. Tremied: Y / N Volume:bags	Description: Bentonite Grout / Native Material / Sand / Other:
MONITORING WELL DEVELOPMENT*	
Development Method: Surge Block Submersible Pump / Peristaltic Pump / Wa Date: 4/17/15	atera / Bailer / Other
vaic.	

*See Monitoring Well Development Data Sheet for details

BORING LOG

PROJECT: East Hampton Brown Relds

LOCATION:

SITE ID: FO -26
SHEET: l of l
PROJECT NO: 2011 0037, A11
WEATHER: Cloud 553

	0.0000000000000000000000000000000000000
CONTRACTOR: Glacier OPERATOR: D.Cook	BORING LOCATION: Belvin Blvd . DATE STARTED: 4/17/15 DATE & TIME COMPLETED: 4/17/15
DRILLING METHOD: Direct Push	DEPTH TO SATURATED ZONE: Not encountred
SAMPLING METHOD: 5' Macro Core	
HAMMER WT: HAMMER FALL (IN)	SAMPLE PREFIX:
	SINOPECO NO CO. 10. CONTROL STOCK ST

START PLOWS REC/ DEPTH				ATERIAL DESCRIPTION			ANALYTICAL SAMPLES				
START DEPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		DE	SCRIPTION	PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV
0	NA	130	0.3	Asphalt	+		NA	AS			
		A 20 M 20	2.5	F-C SAN loose no a refusal a	odar, bown	enzed stone Mossa 7542 5/4	No	SP			
					to Confirm	m obstaction	-			33	
D			0-8	refusa	1 97 81						
	e con e e e e e e e e e e e e e e e e e e e	er marijasandak er er jelen i		off Sct,	Conf.rm	sbancton of drive foint					and the second second second
)		43/	0-	Aspnalt			MA	AS			
			0.3-	F-C SAN	0; sm pulv	brown 7.57% 514	ND	SP			
1		I V	3 - 5	SILT: So bown To	n F-c send syr 5/3	, moist, loose, no oder	ON	ML	***************************************	3700 01700	
5		30/	5- 8	F-C SAN + S:1+, M 7.542 5/4	Di sm po oist, comp . Refusal	ect, no odor brown			A		
			فد	The second secon		parent in tip					
	ORING METER		BORING	METHOD	BORING DEPTH	REMARKS Field Instrument=	If refusal is	encountered	dosseiba	Il offerta wood	
2.5 Geoprobe 8			Field Instrument= If refusal is encountered, describe all efforts used to conf off Sets been filled with nature material & Scrill Played with Concrete at Sortace								
ROPORT ace (tr) ttle (ltl)	O to 10% 10 to 20%	:	Some (sm And	20 to 35% 35 to 50%		Field Decon: Yes/ No / Dedicated BACKFILL	Device	1,			
AMPLE AND, F Dose. N		ION: ngular grav	rel; ltl silt; tr	clay; (10R 5/4)	, wet at 7 ft.	Concrete/Asphalt Bentonite Grout/Chips Native Material Other		То То		See Monitori Completion	

MONITORING WELL COMPLETION REPORT

GENERAL INFORMATION	
Project Name: East Hampden Brownfields	Site ID (Boring/Well ID): Fo-D6
Project Location: <u>East-Hampden</u> CT	Project No.:
F&O Engineer/Geologist: D, Cook	Ground Surface Elevation:
Date of Completion: 4/17/15	Permit #:
Boring Location: Belvin Blvd	E1 Top of Steel Casing:
Drilling Contractor/Name: Glacier	E1 Top of PVC Casing:
Drilling Method: direct Posy	Measuring Point: TPS / PVC
WELL CONSTRUCTION	Well Cover (see codes):
WELL CASING/RISER SUMP (below screen)	Protective Casing
Diameter: 1.5 in. Diameter: 1.5 in.	Diameter:in. Type: Road Box / Stand Pipe
Туре: Р С Туре: Р С	Stick-up:ft Depth to Bottom:ft
Stick-up: 0 ft. Length: 02.5 in.	Scal Material: Con Cock
SCREEN INTERVALS	
Screen Interval: 7-2 ft Diameter: 1.	5 in. Slot Size: O, O)
Description: Other:	
Type: Perforated / Sotted / Wire-Wrap / Other:	
BOREHOLE	
Diameter:ft. Total Boring Depth:ft.	Refusal: (y) n Depth: 7 ft.
ANNULAR FILL	
SURFACE SEAL (Approximate volumes if avail	lable)
Interval: 1-0 ft. Tremied: Y N Volume:bags	Description: Concrete / Other:
BACKFILL	
Interval:ft. Tremied: Y / N Volume:bags	Description: Bentonite Grout / Native Material / Sand / Other:
Lower Seal	
Interval: 1-0.5 ft. Tremied: Y / N Volume:bags	Description: Bentonite Pellets / Other:
FILTER	
Interval: 7-1 ft. Tremied: Y / N Volume:bags	Description: Sand Filter (type:) / Other:
Lower Backfill	
Interval:ft. Tremied: Y / N Volume:bags	Description: Bentonite Grout / Native Material / Sand / Other:
MONITORING WELL DEVELOPMENT*	
Development Method: Surge Block / Submersible Pump / Peristaltic Pump / Wa	atera / Bailer Other no water not developed
Date:	

*See Monitoring Well Development Data Sheet for details

Appendix E

Monitoring Well Field Data Sheets

Monitoring Well Sample Log

Low Flow Sampling

Client/Project Name: Eas+ Ham	Han Brown-Gelds	
Project Location: East Hampton, CT	PROJECT #:	FUSS & O'NEILL Disciplines to Deliver
Sample#: //36/50429-08	WELL ID: FO-02	

Purge Data		Sample D	ata
Date: 4/19/15	Container	Quantity	Preservative
Start time: 1628 Stop time: 1647 Sample time: 1656 Pump Rate: 100 (ml/m) Depth Sampled: 12' Total time purged: 17 Sample: DAC	Nova	3/	HCL
Volume Purged: (ltr) Purge Device Dedicated / Nondedicated Weather: Sung 60's	Prso	1	HN03
Device Type: Bladder / Peristalisic / Submersible Filtered? N Filter Size: (00) 0.45u Filtered in: Field / Lab	AL	3/	ILE
Appearance: Cloudy Off 97 Well Yield: High / Moderate / COV/ Dry PVC: 7,99 TPS: 8.24	P250	1	FHM03
Well Diameter: 1.5 Comments: DTB: 15.45 0,27= 15.32			

Field Parameter Data

Solinst# Z	.]	2020# ~_	YSI 600 # Z				—
Water Level (ft)	Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	pН	Temp. (deg C)	Specific Conductivity (uS)	ORP(mV)
7.99	1628	Begin	Perge -		1		
9.52	1438	our lange	3,46	5.90	8.6	1967	-7.6
9,81	16 4		3.40	5,93	8.8	1976	-21.8
10.14	16 44		3.39	5,94	87	1984	-36.4
10.42	1647	1	3,41	5.95	8,58	1992	- 39.8
	1656	Sample					
		,					

Well Condition Checklist

(circle appropriate item(s), cross out if not applicable]

General Condition: Good / Needs Repair
Protective Steel: OK / Cracked / Leaking / Bent / Loose/ None
Well # Visible: O/ N

Well Cap: Good / Broken / None
Evidence of rain water between steel and PVC?: Y / N

Evidence of ponding around well?: Y / N

Gopher type holes around collar?: Y / N

Comments:

| Is well plumb?: Y / N
| Lock: Good / Broken / None
| Rust around cap: Y / N
| PVC Riser: Good / Damaged / None
| Concrete collar: OK / Cracked / Leaking / None
| Other evidence of: Rodents / Insects / None
| Curb Box: N / Y (key is: Hex / Pent / Other)

Monitoring Well Sample Log

Low Flow Sampling

Client/Project Name: East Hams for 2 com Gields

Project Location: East Hams for 2 com Gields

Project Location: East Hams for 2 com Gields

FUSS & O'NEILL

Disciplines to Deliver

WELL ID: F0 - Ø3

Purge Data Sample Data

- 			
Date: 4/21/15	Container	Quantity	Preservative
Start time: 1730 Stop time: 1205 Sample time: 1808 Pump Rate: 180 Depth Sampled: 12	WA	. 3	Her
Total time purged: 35 Sampler: DAC	1	,	41.42
Volume Purged: 3.5 (ltr) Purge Device: Oedicated / Nondedicated Weather: 45 5000 (0.5)	125-	•	HNO3
Device Type: Bladder / Peristatic / Submersible	Ar	3	168
Filtered? N/Y Filter Size: 10u/0.45u Filtered in: Field/Lab Appearance: Clear PVC: 8.67			
Well Yield: High / Moderate (Lov) / Dry TPS:			
Well Diameter: 1,5 DTB: 14.30 +0.21 > 15,-7			
Comments:			

Field Parameter Data

Solinst# ~		2020# 2	YSI 600 # ~_				
Water Level (ft)	Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	pН	Temp. (deg C)	Specific Conductivity (uS)	ORP(mV)
8.07	1736	Begin	Purge -				
9,30	1740	371	2.86	6,48	B,5	1506	-142.8
9.41	1745	40.9	2.26	6.47	B,5	1665	-160.6
	1750	30.8	2.59	6.41	8.7	1743	-128.2
9,41	1755	2612	2.55	6,43	8.7	1812	-127.8
9.41	1800	18.7	2.61	6,41	8.6	1856	-112.4
9,41	1805	14.0	2.63	6.31	8.6	1898	-104.6
				·		•	
\	1808	Sample					
						* .	

Well Condition Checklist (circle appropriate	item(s), cross out if not applicable]
General Condition: Good / Needs Repair Protective Steel OF / Cracked / Leaking / Bent / Loose/ None Well # Visible: N Well Cap: Good / Broken / None Evidence of rain water between steel and PVC?: Y / Evidence of ponding around well?: Y / N Gopher type holes around collar?: Y / N Comments:	Is well plumb?: \(\text{N} \) Lock: Good / Broken / None Rust around cap: Y / N PVC Riser: Good / Damaged / None Concrete collar: Old / Cracked / Leaking / None Other evidence of: Rodents / Insects / None Curb Box: N Y key is: hex / Pent / Other)

Monitoring Well Sample Log Low Flow Sampling

Client/Project Name: East Ham / to	- Brown Fields	
Project Location: East Hampton, CT	PROJECT #:	FUSS & O'NEILL Disciplines to Deliver
Sample#: 1176150429-06	WELL ID: Fo- 05	•

Sample Data **Purge Data**

- 			
Date: 4/29/15	Container	Quantity	Preservative
Start time: 1448 Stop time: 1523 Sample time: 1536 Pump Rate: 260 (ml/m) Depth Sampled: 9	SOA	3	HU
Total time purged: 35 Volume Purged: 315 Purge Device: Dedicated Nondedicated Weather: 500 5	P250	J	HVO3
Device Type: Bladder / Peristalia / Submersible	A-	3	110
Appearance: Closdy/Clear Well Yield: High / Moderate / Low / Dry PVC: 2.6 TPS: 2.0			
Well Diameter: 1,5" Comments: DTB: 10,66 +0,27			

Field Parameter Data

mament 1D	77						
Solinst# Z]	ع #2020	YSI 600 # Z =				—
Water Level (ft) f	Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	pH	Temp. (deg C)	Specific Conductivity (uS)	ORP(mV)
2.67	1448	Begin	Avec -				
5,15	1458	Begin 47.8	0142	6.60	10.8	765	-375,2
5,40	1503	2618	0.42	6,72	1017	785	-366.0
5.55	1508	19.4	0,56	6,77	11.0	788	-342,5
5160	1513	11.5	0,69	6.80	11.4	776	-323.6
5.60	1518	8,79	6167	6.81	10.6	746	- 304.2
5.60	1523	4.21	0.68	6.30	10.9	742	-302.1
<u> </u>	1530	Sample				Maria de la compansión de	,
		•					

Well Condition Checklist (cir	cle appropriate item(s), cross out if not applicable]
General Condition: Good / Needs Repair Protective Steel:	Is well plumb?: V/ N Lock: Good / Broken / John Rust around cap Y N PVC Riser: Good / Damaged / None Concrete collar: OK / Cracked / Leaking / None Other evidence of: Rodents / Insects / Joge Curb Box: N / Okey is: Hex Pent / Other)

Monitoring Well Sample Log Low Flow Sampling

Client/Project Name: East Hampton	Brown Fields	
Project Location: East Hampton, I	PROJECT #:	FUSS & O'NEILL Disciplines to Deliver
Sample#: // 76/50429-05	WELL ID: MW-1	Zangana a zanca
	WATROUS	

Purge Data		Sample D	ata
Date: 4/29/15	Container	Quantity	Preservative
Start time: 1400 Stop time: 1428 Sample time: 1428 Pump Rate: 250 (ml/m) Depth Sampled: 19,25	VOA	3	Her
Total time purged: Sampler: DAC Volume Purged: (ltr)	P250	t	HNO3
Purge Device: Dedicated / Nondedicated Weather: Swoy 60; Device Type: Bladder / Perstaltio / Submersible	A_	3	TLE
Filtered? N Filter Size: 100 0.45u Filtered in: Field Lab Appearance: C/cq C-Cloudy PVC: 10.68	Peso	(FHM03
Well Yield: High / Moderate / Low / Dry Well Diameter: 2 TPS:			101
Comments:			

Field Parameter Data

	Instrument	ID#
--	------------	-----

diument in	777						
Solinst# 2_		2020# -	YSI 600 # ~ -				—
Water Level (ft) {VZ	Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	рН	Temp. (deg C)	Specific Conductivity (uS)	ORP(mV)
11.60	1400	Besin	Purge -				
11.85	1410	46.1	4.27	6.08	11.7	436.9	379.3
1,35	1415	3614	4.79	6.07	11.7	436.4	3821
11,85	1420	38,8	4,82	6.06	11,6	475.8	385.5
11,05	1425	39,2	4,84	6,06	11.7	436,5	38811
	1423	Sample	,				-,
		. ,,					
							-
					-		
			=			,	
				1		1	

Well Condition Checklist (cir	cle appropriate item(s), cross out if not applicable]
General Condition: Cood Needs Repair Protective Steel: OR Cracked / Leaking / Bent / Loose/ None Well # Visible?: Y Well Cap: Good / Broken / None Evidence of rain water between steel and PVC?: Y Evidence of ponding around well?: Y / N Gopher type holes around collar?: Y / N Comments:	Is well plumb; Y / N Lock: Good / Broken / None Rust around cap; Y / N PVC Riser: Good / Damaged / None Concrete collar: OK / Cracked / Leaking / None Other evidence of Rodents / Insects / None Curb Box: N / Weey is: Her / Pent / Other)

Monitoring Well Sample Log

Low Flow Sampling

Client/Project Name: East Ham Pro	, 331	
Project Location: East Hamston, CT	PROJECT #:	FUSS & O'NEILL Disciplines to Deliver
Sample#: 1176150429-03	WELL ID: MW-Z	

-04 diplicate

Purge Data		Sample D	ata
Date: 4/29/15	Container	Quantity	Preservative
Start time: 1303 Stop time: 1375 Sample time: 1375/1345 Pump Rate: 250 (ml/m) Depth Sampled: 18.5	SUA	3×2	HCC
Total time purged: 22 Sampler: DAC Volume Purged: 4.4 (ltr)	P250	142	HNDS
Purge Device: Dedicated / Nondedicated Weather: Swny 60;	AL.	3 22	116
Device Type: Bladder / Submersible Filtered? N Filter Size: 101 0.45u Filtered in: Field / Lab Appearance: PVC: 1.92	(250	172	FHNO3
W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	į.	10.54

8.70 DTB: 21.14+927= 21.41 1250

Field Parameter Data

Instrument ID#

Comments:

Well Yield: High / Moderate / Low / Dry Well Diameter: 2

Solinst# ┺		2020# 2_	YSI 600 # ~ -				—
Water Level (ft)	Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	рН	Temp. (deg C)	Specific Conductivity (uS)	ORP(mV)
7.92	1308	Pesis	Purse -				
3.00	1318	1.8/	7,07	5.67	n.i	608.	391.8
8.00	1321	20.3	6.84	5.66	10.8	567.5	397.3
8,00	1324	15.4	7101	5,66	10.9	574.0	397.2
8.00	1327	14.6	6.99	5.67	10.7	582.2	399.3
8,00	1330	16.4	7,03	5.64	10.9	586.6	400.3
		5.					
	1335	Sample					-
	1345	Sample	duplica te				

Well Condition Checklist (circle and	opropriate item(s), cross out if not applicable]
General Condition Food / Needs Repair Protective Steel: OK / Cracked / Leaking / Bent / Loose/ None Well # Visible?: Y / D Well Cap: Good / Broken / None Evidence of rain water between steel and PVC?: Y / D Evidence of ponding around well?: Y / D Gopher type holes around collar?: Y / N Comments:	Is well plumb?: Y N Lock: Good / Broken / None Rust around cap: N PVC Riser Good Damaged / None Concrete collar: OK / Cracked / Leaking / None Other evidence of: Rodents / Insects / None Curb Box: N Y Dey is Hex / Pent / Other)

Monitoring Well Sample Log Low Flow Sampling

Client/Project Name: East Hamfto	Client/Project Name: East Hampton Bounfields					
Project Location: East Harryton, CT	PROJECT #:		FUSS & O'NEILL Disciplines to Deliver			
Sample#: 1176150429-02	WELL ID: MW-3		,			

Purge Data Watras St		Sample D	ata
Date: 4/21/15	Container	Quantity	Preservative
Start time: 1227 Sample time: 1235 Pump Rate: (ml/m) Depth Sampled: 21 Total time purged: 27 Sampler: DAC		3/	Hei
Volume Purged: 2.7 (ltr) Purge Device: Occident / Nondedicated Weather: Suny 60's	P258	15	H1003
Perice Type: Bladder / Peristalic / Submersible Filtered? N / Filter Size:	P256	3/	EHNO?
Well Yield: High / Moderate / Low Dry Well Diameter: 2" TPS: 6,84 DTB: 27.85+0.24= 24.15	_ ' '	•	Ion LHN03
Comments:			

Field Parameter Data

Instrument ID	#					
Solinst# 2		2020#	2	YSI 600 # 2	_	
Water Level		Tuel	sidity	Discolved		

Solinst# 2		2020# 2	YSI 600 # 2	,			
Water Level (ft) PL	Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	pН	Temp. (deg C)	Specific Conductivity (uS)	ORP(mV)
6,43	1200	Begn	arse -				
9.45	1210	13.7	5.58	5.55	10.2	636,2	395.2
9.72	1213	21,2	5,97	5.55	10.6	643.6	397.7
10.03	1215	16.7	5.82	5.55	10.6	638,4	407.3
10,30	1218	15.1	5, 41	5.55	11.1	638.3	404.0
10.45	1221	13.8	5.84	5.55	11.5	640.8	404.4
10.46	1224	14.0	5.37	5.53	11.0	641:6	407.3
10,48	1227	15.0	5,83	5.56	10.9	638,6	407.9
	1236	sample					
			-				
	[

Well Condition Checklist	circle appropriate item(s), cross out if not applicable]
General Condition: Good / Needs Repair Protective Steel: Ok / Cracked / Leaking / Bent / Loose/ N Well # Visible?: Y Well Cap: Good / Broken / None Evidence of rain water between steel and PVC?: Y Evidence of ponding around well?: Y / N Gopher type holes around collar?: Y / N Comments:	Is well plumb?: V N Lock: Good / Broken / None Rust around cap. V N PVC Riser Good / Damaged / None Concrete collar: OK / Cracked / Leaking / None Other evidence of: Rodents / Insects / None Curb Box: N Y key is: OX / Pent / Other)

Monitoring Well Sample Log

Low Flow Sampling

Client/Project Name: Egs+ Hampton Brown Fields

Project Location: East Ham (ton, - PROJECT #:

Sample#: //76150421-07 WELL ID: MW-4

MAIN ST

Purge Data		Sample D	ata
Date: 4/29/15	Container	Quantity	Preservative
Start time: 1548 Stop time: 1612 Sample time: 1614 Pump Rate: 252 (ml/m) Depth Sampled: 52 Sampler: DAC	VOD	3	Hc-
Total time purged: 22 Sampler: DAC Volume Purged: 4.9 (ltr) Purge Device: Dedicated / Nondedicated Weather: 5-10-9 60-3	P250)	Hvos
Device Type: Bladder / Peristanc / Submersible Filtered? N / Filter Size: (Th) 0.45u Filtered in: (Lab)	AL	3	168
Appearance: Clear Well Yield: High / Moderate / Low / Dry Well Diameter: 2' PVC: 6,8 † TPS: 7.00 DTB: /// 84 + 0,27	8250	1	FHNOZ
Comments:			

Field Parameter Data

istrument ID	#						
Solinst# 2		2020# 2_	YSI 600 # ~ -				—
Water Level (ft)	Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	pН	Temp. (deg C)	Specific Conductivity (uS)	ORP(mV)
6,37	1548	Begin	Porse -				
6.88	1558	12.8	0	6.64	9.3	342.9	-125.6
6,88	1601	14,8	0	6.65	9,2	347.9	-179,0
	1604	10175	0	6.65	9,2	350,9	-142.4
6.88	1607	10.24	6	6.67	9.2	3531	-148.6
6,88	1610	9,56	٥	6.66	9.2	357.0	-153.4
	1614	Sample					-
				}			

Well Condition Checklist	(circle appropriate item(s), cross out if not applicable]
General Condition: Cood / Needs Repair Protective Steel: Or / Cracked / Leaking / Bent / Loose/ Well # Visible?: Y Well Cap: Cood / Broken / None Evidence of rain water between steel and PVC?: Y / TS Evidence of ponding around well?: Y / TS Gopher type holes around collar?: Y / TS Comments:	Is well plumb?: Y / N Lock: Good / Broken / None Rust around cap: Y / N PVC Riser: Good / Damaged / None Concrete collar: Of / Cracked / Leaking / None Other evidence of: Rodents / Insects / None Curb Box: N Y key is: He) / Pent / Other)

Appendix F

Data Validation Completeness Checklist

INITIAL DATE: OCTOBER 2011 REVISION DATE: FEBRUARY 2012 REVISION: 1.0

GENERIC QUALITY ASSURANCE PROJECT PLAN FOR PROJECTS IN CONNECTICUT, MASSACHUSETTS AND RHODE ISLAND MODIFIED TIER I COMPLETENESS CHECKLIST

	<u>YES</u>	<u>NO</u>
1. SAMPLING AND FIELD MEASUREMENTS:		
Field measurement calibration records	Ξ	
Groundwater field measurements (if applicable)	Ξ	
Soil sampling field measurements (if applicable)	N/A	
Sediment sampling field measurements (if applicable)	N/A	
Surface water sampling field measurements (if applicable)	N/A	
Low-flow sampling field measurements (if applicable)	Ξ	
Documentation of field activities	Ξ	
Sample numbering and labeling	Ξ	
Chain-of-Custody records	Ξ	
Trip blanks	Ξ	
Duplicate samples	Ξ	
Equipment blanks	N/A	
Split samples (if any)	N/A	
2. LABORATORY MEASUREMENTS:		
Trip blanks	Ξ	
Instrument blanks	Ξ	
Laboratory control samples	Ξ	
Duplicates samples	Ξ	
Equipment blanks	N/A	
Matrix spike/matrix spike duplicates	Ξ	
Analysis type	Ξ	
Chain-of-Custody records	Ξ	
Surrogate recoveries	Ξ	
Sample Project Narratives	Ξ	
Split samples (if any)	N/A	
TOTAL:	<u>_17</u>	_0_

PERCENT COMPLETE: __100___ %

Appendix G

Laboratory Analytical Report

Thursday, May 07, 2015

Attn: Ms Stephanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Project ID: EAST HAMPTON BROWNFIELDS

Sample ID#s: BJ10075 - BJ10083

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

May 07, 2015

SDG I.D.: GBJ10075

Volatile 8260 analysis:

The reporting level for Acrylonitrile is above the GWP criteria.

1,2-Dibromoethane does not meet GWP criteria, this compound is analyzed by GC/ECD to achieve this criteria.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 07, 2015

FOR: Attn: Ms Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information **Custody Information** Date Time DC 04/29/15 Matrix: **GROUND WATER** Collected by: 12:00 Received by: Location Code: F&O LK 04/30/15 11:10

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20110037.A11

Laboratory Data SDG ID: GBJ10075

Phoenix ID: BJ10075

Project ID: EAST HAMPTON BROWNFIELDS

Client ID: 1176150429-01

RL/ **PQL** Parameter Result Units Dilution Date/Time Reference Volatiles 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 1 05/01/15 MH SW8260 ND 1.0 1 05/01/15 SW8260 1,1,1-Trichloroethane ug/L MH 1,1,2,2-Tetrachloroethane ND 0.50 ug/L 1 05/01/15 MH SW8260 ND SW8260 1.0 ug/L 1 05/01/15 МН 1,1,2-Trichloroethane ND 1.0 ug/L 1 05/01/15 MH SW8260 1,1-Dichloroethane ND 1 05/01/15 SW8260 1,1-Dichloroethene 1.0 ug/L ND 1.0 ug/L 1 05/01/15 MH SW8260 1,1-Dichloropropene 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 05/01/15 MH SW8260 ND 1.0 1 05/01/15 MH SW8260 ug/L 1,2,3-Trichloropropane SW8260 ND 1.0 ug/L 1 05/01/15 MH 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 05/01/15 MH SW8260 1,2,4-Trimethylbenzene ND 1.0 ug/L 1 05/01/15 MH SW8260 1,2-Dibromo-3-chloropropane ND SW8260 1,2-Dibromoethane 1.0 ug/L 1 05/01/15 MH ND 1.0 1 05/01/15 MH SW8260 ug/L 1,2-Dichlorobenzene ND 0.60 1 05/01/15 MH SW8260 ug/L 1,2-Dichloroethane 1,2-Dichloropropane ND 1.0 ug/L 1 05/01/15 MH SW8260 ND 1.0 ug/L 1 05/01/15 MH SW8260 1,3,5-Trimethylbenzene ND SW8260 1,3-Dichlorobenzene 1.0 ug/L 1 05/01/15 MH ND SW8260 1.0 ug/L 1 05/01/15 MH 1,3-Dichloropropane ND 1 05/01/15 SW8260 1.0 ug/L MH 1,4-Dichlorobenzene SW8260 2,2-Dichloropropane ND 1.0 ug/L 1 05/01/15 MH ND 05/01/15 SW8260 2-Chlorotoluene 1.0 ua/L 1 MH ND 5.0 ug/L 05/01/15 MH SW8260 2-Hexanone SW8260 2-Isopropyltoluene ND 1.0 ug/L 1 05/01/15 MH 1 05/01/15 SW8260 ND 1.0 ug/L MH 4-Chlorotoluene 4-Methyl-2-pentanone ND 5.0 ug/L 1 05/01/15 MH SW8260

Page 1 of 27 Ver 1

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	25	ug/L	1	05/01/15	MH	SW8260
Acrylonitrile	ND	5.0	ug/L	1	05/01/15	MH	SW8260
Benzene	ND	0.70	ug/L	1	05/01/15	MH	SW8260
Bromobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Bromochloromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	05/01/15	MH	SW8260
Bromoform	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Bromomethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	05/01/15	MH	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Chlorobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Chloroethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Chloroform	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Chloromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	05/01/15	MH	SW8260
Dibromochloromethane	ND	0.50	ug/L	1	05/01/15	MH	SW8260
Dibromomethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Ethylbenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	1	05/01/15	МН	SW8260
Isopropylbenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
m&p-Xylene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	1	05/01/15	МН	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Methylene chloride	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Naphthalene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
n-Butylbenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
n-Propylbenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
o-Xylene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
sec-Butylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Styrene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
tert-Butylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Tetrachloroethene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	05/01/15	MH	SW8260
Toluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Total Xylenes	ND	1.0	ug/L	1	05/01/15	MH	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	05/01/15	MH	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	05/01/15	MH	SW8260
Trichloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Vinyl chloride	ND	1.0	ug/L	1	05/01/15	МН	SW8260
•	IND	1.0	ug/L	ı	03/01/13	IVI	JVV0200
QA/QC Surrogates	101		0/	4	05/01/15	N.4□	70 120 %
% 1,2-dichlorobenzene-d4	101		%	1	05/01/15	MH	70 - 130 %
% Bromofluorobenzene	99		%	1	05/01/15	MH	70 - 130 %
% Dibromofluoromethane	99		%	1	05/01/15	МН	70 - 130 %

Page 2 of 27 Ver 1

Project ID: EAST HAMPTON BROWNFIELDS

Client ID: 1176150429-01

RL/ Parameter Result **PQL** Units Dilution Date/Time Βv Reference % Toluene-d8 99 % 1 05/01/15 МН 70 - 130 %

Phoenix I.D.: BJ10075

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

TRIP BLANK INCLUDED.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 07, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 3 of 27 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 07, 2015

FOR: Attn: Ms Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information Custody Information <u>Time</u> Date **GROUND WATER** Collected by: DC 04/29/15 12:30 Matrix: F&O Received by: LK 04/30/15 **Location Code:** 11:10 Rush Request: Analyzed by: Standard see "By" below

P.O.#: 20110037.A11

Laboratory Data

RL/

SDG ID: GBJ10075

Phoenix ID: BJ10076

Project ID: EAST HAMPTON BROWNFIELDS

Client ID: 1176150429-02

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction of CT ETPH	Completed				04/30/15	ET	SW3510C/SW3520C
Semi-Volatile Extraction	Completed				04/30/15	E/D	SW3520C
TPH by GC (Extractable	Products	<u>.)</u>					
Ext. Petroleum HC	ND	0.070	mg/L	1	05/01/15	JRB	CTETPH 8015D
Identification	ND		mg/L	1	05/01/15	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	85		%	1	05/01/15	JRB	50 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	05/01/15	MH	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,2-Dibromoethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	05/01/15	MH	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260

Page 4 of 27 Ver 1

Client ID: 1176150429-02

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,3-Dichloropropane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
2-Hexanone	ND	5.0	ug/L	1	05/01/15	MH	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	05/01/15	MH	SW8260
Acetone	ND	25	ug/L	1	05/01/15	MH	SW8260
Acrylonitrile	ND	5.0	ug/L	1	05/01/15	MH	SW8260
Benzene	ND	0.70	ug/L	1	05/01/15	MH	SW8260
Bromobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Bromochloromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	05/01/15	МН	SW8260
Bromoform	ND	1.0	ug/L	1	05/01/15	МН	SW8260
3romomethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	05/01/15	МН	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Chlorobenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Chloroethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Chloroform	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Chloromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
sis-1,2-Dichloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
is-1,3-Dichloropropene	ND	0.40	ug/L	1	05/01/15	MH	SW8260
Dibromochloromethane	ND	0.50	ug/L	1	05/01/15	MH	SW8260
Dibromomethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Ethylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	1	05/01/15	MH	SW8260
sopropylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
n&p-Xylene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
	ND	5.0	ug/L	1	05/01/15	MH	SW8260
Nethyl ethyl ketone Nethyl t-butyl ether (MTBE)	ND	1.0	ug/L ug/L	1	05/01/15	МН	SW8260
Methylene chloride	ND	1.0	ug/L	1	05/01/15	MH	SW8260
<u>-</u>	ND	1.0	ug/L ug/L	1	05/01/15	МН	SW8260
Naphthalene	ND	1.0	ug/L ug/L	1	05/01/15	МН	SW8260
n-Butylbenzene	ND ND	1.0	ug/L ug/L	1			SW8260 SW8260
n-Propylbenzene		1.0			05/01/15	MH	
o-Xylene	ND		ug/L	1	05/01/15	MH	SW8260
o-Isopropyltoluene	ND ND	1.0	ug/L	1	05/01/15	MH	SW8260
ec-Butylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Styrene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
ert-Butylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Tetrachloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
「etrahydrofuran (THF)	ND	2.5	ug/L	1	05/01/15	MH	SW8260
Foluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Total Xylenes	ND	1.0	ug/L	1	05/01/15	MH	SW8260
rans-1,2-Dichloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
rans-1,3-Dichloropropene	ND	0.40	ug/L	1	05/01/15	MH	SW8260
rans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	05/01/15	MH	SW8260

Page 5 of 27 Ver 1

Client ID: 1176150429-02

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Trichloroethene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Vinyl chloride	ND	1.0	ug/L	1	05/01/15	MH	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	99		%	1	05/01/15	MH	70 - 130 %
% Bromofluorobenzene	97		%	1	05/01/15	MH	70 - 130 %
% Dibromofluoromethane	94		%	1	05/01/15	MH	70 - 130 %
% Toluene-d8	97		%	1	05/01/15	МН	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.10	ug/L	1	05/01/15	DD	SW8270D (SIM)
Acenaphthene	ND	0.10	ug/L	1	05/01/15	DD	SW8270D (SIM)
Acenaphthylene	ND	0.10	ug/L	1	05/01/15	DD	SW8270D (SIM)
Anthracene	ND	0.10	ug/L	1	05/01/15	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.02	ug/L	1	05/01/15	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	0.02	ug/L	1	05/01/15	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.02	ug/L	1	05/01/15	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.10	ug/L	1	05/01/15	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.02	ug/L	1	05/01/15	DD	SW8270D (SIM)
Chrysene	ND	0.02	ug/L	1	05/01/15	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	05/01/15	DD	SW8270D (SIM)
Fluoranthene	ND	0.10	ug/L	1	05/01/15	DD	SW8270D (SIM)
Fluorene	ND	0.10	ug/L	1	05/01/15	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.02	ug/L	1	05/01/15	DD	SW8270D (SIM)
Naphthalene	ND	0.10	ug/L	1	05/01/15	DD	SW8270D (SIM)
Phenanthrene	ND	0.07	ug/L	1	05/01/15	DD	SW8270D (SIM)
Pyrene	ND	0.10	ug/L	1	05/01/15	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	69		%	1	05/01/15	DD	30 - 130 %
% Nitrobenzene-d5	74		%	1	05/01/15	DD	30 - 130 %
% Terphenyl-d14	87		%	1	05/01/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 07, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 6 of 27 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 07, 2015

FOR: Attn: Ms Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information **Custody Information** Date Time DC 04/29/15 Matrix: **GROUND WATER** Collected by: 13:35 Received by: Location Code: F&O LK 04/30/15 11:10

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20110037.A11 Laboratory Data

<u>aboratory Data</u>

SDG ID: GBJ10075

Phoenix ID: BJ10077

Project ID: EAST HAMPTON BROWNFIELDS

Client ID: 1176150429-03

RL/ Parameter **PQL** Result Units Dilution Date/Time By Reference 04/30/15 Extraction of CT ETPH Completed ET SW3510C/SW3520C Semi-Volatile Extraction Completed 04/30/15 E/D SW3520C TPH by GC (Extractable Products) JRB Ext. Petroleum HC ND 0.070 mg/L 1 05/01/15 CTETPH 8015D ND 1 05/01/15 Identification mg/L JRB CTETPH 8015D **QA/QC Surrogates** % n-Pentacosane 82 % 05/01/15 **JRB** 50 - 150 % Volatiles 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 05/01/15 MH SW8260 ND 1,1,1-Trichloroethane 1.0 ug/L 1 05/01/15 MH SW8260 ND 0.50 ug/L 1 05/01/15 МН SW8260 1,1,2,2-Tetrachloroethane SW8260 ND 1.0 ug/L 1 05/01/15 MH 1,1,2-Trichloroethane ND 05/01/15 SW8260 1.0 ua/L 1 MH 1,1-Dichloroethane SW8260 1,1-Dichloroethene ND 1.0 ug/L 05/01/15 MH ND 05/01/15 SW8260 1.0 ug/L 1 MH 1,1-Dichloropropene 05/01/15 SW8260 ND 1 1.0 ug/L MH 1,2,3-Trichlorobenzene ND 1 0 ug/L 1 05/01/15 МН SW8260 1,2,3-Trichloropropane SW8260 ND 1.0 ug/L 1 05/01/15 MH 1,2,4-Trichlorobenzene ND 05/01/15 MH SW8260 1,2,4-Trimethylbenzene 1.0 ug/L 1 SW8260 1,2-Dibromo-3-chloropropane ND 1.0 ug/L 1 05/01/15 MH SW8260 ND 1 05/01/15 1,2-Dibromoethane 1.0 ug/L MH SW8260 ND 1.0 ug/L 1 05/01/15 MH 1.2-Dichlorobenzene ND 0.60 1 05/01/15 МН SW8260 ug/L 1,2-Dichloroethane SW8260 ND 1.0 ug/L 1 05/01/15 MH 1,2-Dichloropropane ND 1 05/01/15 SW8260 1,3,5-Trimethylbenzene 1.0 ug/L SW8260 1,3-Dichlorobenzene ND 1.0 ug/L 1 05/01/15 MH

Page 7 of 27 Ver 1

Client ID: 1176150429-03

arameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
,3-Dichloropropane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
,4-Dichlorobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
,2-Dichloropropane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
-Chlorotoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
-Hexanone	ND	5.0	ug/L	1	05/01/15	MH	SW8260
-Isopropyltoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
-Chlorotoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Methyl-2-pentanone	ND	5.0	ug/L	1	05/01/15	MH	SW8260
cetone	ND	25	ug/L	1	05/01/15	MH	SW8260
crylonitrile	ND	5.0	ug/L	1	05/01/15	MH	SW8260
enzene	ND	0.70	ug/L	1	05/01/15	MH	SW8260
romobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
romochloromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
romodichloromethane	ND	0.50	ug/L	1	05/01/15	МН	SW8260
romoform	ND	1.0	ug/L	1	05/01/15	МН	SW8260
romomethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
arbon Disulfide	ND	5.0	ug/L	1	05/01/15	МН	SW8260
arbon tetrachloride	ND	1.0	ug/L	1	05/01/15	МН	SW8260
hlorobenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
hloroethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
hloroform	ND	1.0	ug/L	1	05/01/15	МН	SW8260
nloromethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
s-1,2-Dichloroethene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
s-1,3-Dichloropropene	ND	0.40	ug/L	1	05/01/15	МН	SW8260
bromochloromethane	ND	0.50	ug/L	1	05/01/15	МН	SW8260
bromomethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
chlorodifluoromethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
hylbenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
exachlorobutadiene	ND	0.40	ug/L	1	05/01/15	МН	SW8260
opropylbenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
&p-Xylene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
ethyl ethyl ketone	ND	5.0	ug/L	1	05/01/15	МН	SW8260
ethyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	05/01/15	MH	SW8260
ethylene chloride	ND	1.0	ug/L	1	05/01/15	МН	SW8260
aphthalene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Butylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Propylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Xylene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Isopropyltoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
c-Butylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
yrene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
rt-Butylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
etrachloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
etrahydrofuran (THF)	ND	2.5	ug/L	1	05/01/15	MH	SW8260
bluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
otal Xylenes	ND	1.0	ug/L	1	05/01/15	MH	SW8260
ans-1,2-Dichloroethene	ND	1.0	ug/L ug/L	1	05/01/15	MH	SW8260
ans-1,2-Dichloropropene	ND	0.40	ug/∟ ug/L	1	05/01/15	МН	SW8260
	חאו	0.40	ug/L		00/01/10	IVIII	3440200

Page 8 of 27 Ver 1

Client ID: 1176150429-03

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Trichloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Vinyl chloride	ND	1.0	ug/L	1	05/01/15	MH	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	100		%	1	05/01/15	MH	70 - 130 %
% Bromofluorobenzene	96		%	1	05/01/15	MH	70 - 130 %
% Dibromofluoromethane	93		%	1	05/01/15	MH	70 - 130 %
% Toluene-d8	99		%	1	05/01/15	МН	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.10	ug/L	1	05/01/15	DD	SW8270D (SIM)
Acenaphthene	ND	0.10	ug/L	1	05/01/15	DD	SW8270D (SIM)
Acenaphthylene	ND	0.10	ug/L	1	05/01/15	DD	SW8270D (SIM)
Anthracene	ND	0.10	ug/L	1	05/01/15	DD	SW8270D (SIM)
Benz(a)anthracene	0.05	0.02	ug/L	1	05/01/15	DD	SW8270D (SIM)
Benzo(a)pyrene	0.05	0.02	ug/L	1	05/01/15	DD	SW8270D (SIM)
Benzo(b)fluoranthene	0.07	0.02	ug/L	1	05/01/15	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.10	ug/L	1	05/01/15	DD	SW8270D (SIM)
Benzo(k)fluoranthene	0.03	0.02	ug/L	1	05/01/15	DD	SW8270D (SIM)
Chrysene	0.03	0.02	ug/L	1	05/01/15	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	05/01/15	DD	SW8270D (SIM)
Fluoranthene	ND	0.10	ug/L	1	05/01/15	DD	SW8270D (SIM)
Fluorene	ND	0.10	ug/L	1	05/01/15	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	0.04	0.02	ug/L	1	05/01/15	DD	SW8270D (SIM)
Naphthalene	ND	0.10	ug/L	1	05/01/15	DD	SW8270D (SIM)
Phenanthrene	ND	0.07	ug/L	1	05/01/15	DD	SW8270D (SIM)
Pyrene	ND	0.10	ug/L	1	05/01/15	DD	SW8270D (SIM)
QA/QC Surrogates			•				
% 2-Fluorobiphenyl	61		%	1	05/01/15	DD	30 - 130 %
% Nitrobenzene-d5	60		%	1	05/01/15	DD	30 - 130 %
% Terphenyl-d14	122		%	1	05/01/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 07, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 9 of 27 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 07, 2015

FOR: Attn: Ms Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information **Custody Information** Date Time DC 04/29/15 Matrix: **GROUND WATER** Collected by: 13:45 Received by: Location Code: F&O LK 04/30/15 11:10

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20110037.A11

Laboratory Data SDG ID: GBJ10075

Phoenix ID: BJ10078

Project ID: EAST HAMPTON BROWNFIELDS

Client ID: 1176150429-04

RL/ Parameter **PQL** Result Units Dilution Date/Time By Reference 04/30/15 Extraction of CT ETPH Completed ET SW3510C/SW3520C Semi-Volatile Extraction Completed 04/30/15 E/D SW3520C TPH by GC (Extractable Products) JRB Ext. Petroleum HC ND 0.074 mg/L 1 05/02/15 CTETPH 8015D ND 1 Identification mg/L 05/02/15 JRB CTETPH 8015D **QA/QC Surrogates** 83 % 05/02/15 % n-Pentacosane **JRB** 50 - 150 % Volatiles 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 05/01/15 MH SW8260 ND 1,1,1-Trichloroethane 1.0 ug/L 1 05/01/15 MH SW8260 ND 0.50 ug/L 1 05/01/15 МН SW8260 1,1,2,2-Tetrachloroethane ug/L SW8260 ND 1.0 1 05/01/15 MH 1,1,2-Trichloroethane ND 05/01/15 SW8260 1.0 ua/L 1 MH 1,1-Dichloroethane SW8260 1,1-Dichloroethene ND 1.0 ug/L 05/01/15 MH ND 05/01/15 SW8260 1.0 ug/L 1 MH 1,1-Dichloropropene SW8260 ND 1 05/01/15 1.0 ug/L MH 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 05/01/15 МН SW8260 1,2,3-Trichloropropane SW8260 ND 1.0 ug/L 1 05/01/15 MH 1,2,4-Trichlorobenzene ND 05/01/15 MH SW8260 1,2,4-Trimethylbenzene 1.0 ug/L 1 SW8260 1,2-Dibromo-3-chloropropane ND 1.0 ug/L 1 05/01/15 MH SW8260 ND 1 05/01/15 1,2-Dibromoethane 1.0 ug/L MH SW8260 ND 1.0 ug/L 1 05/01/15 MH 1.2-Dichlorobenzene ND 0.60 1 05/01/15 МН SW8260 ug/L 1,2-Dichloroethane SW8260 ND 1.0 ug/L 1 05/01/15 MH 1,2-Dichloropropane ND 1 05/01/15 SW8260 1,3,5-Trimethylbenzene 1.0 ug/L SW8260 1,3-Dichlorobenzene ND 1.0 ug/L 1 05/01/15 MH

Page 10 of 27 Ver 1

Client ID: 1176150429-04

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,3-Dichloropropane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
2-Hexanone	ND	5.0	ug/L	1	05/01/15	MH	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	05/01/15	MH	SW8260
Acetone	ND	25	ug/L	1	05/01/15	MH	SW8260
Acrylonitrile	ND	5.0	ug/L	1	05/01/15	MH	SW8260
Benzene	ND	0.70	ug/L	1	05/01/15	MH	SW8260
Bromobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Bromochloromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	05/01/15	МН	SW8260
Bromoform	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Bromomethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	05/01/15	МН	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Chlorobenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Chloroethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Chloroform	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Chloromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
is-1,2-Dichloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
is-1,3-Dichloropropene	ND	0.40	ug/L	1	05/01/15	MH	SW8260
Dibromochloromethane	ND	0.50	ug/L	1	05/01/15	MH	SW8260
Dibromomethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Ethylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	1	05/01/15	MH	SW8260
	ND	1.0	ug/L	1	05/01/15	MH	SW8260
sopropylbenzene	ND	1.0		1	05/01/15	MH	SW8260
n&p-Xylene	ND	5.0	ug/L	1	05/01/15	МН	SW8260
Methyl ethyl ketone	ND	1.0	ug/L ug/L	1	05/01/15	МН	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0		1	05/01/15	MH	SW8260
Methylene chloride			ug/L				
Naphthalene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
n-Butylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
-Propylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
o-Xylene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
o-Isopropyltoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
ec-Butylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Styrene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
ert-Butylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
etrachloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	05/01/15	MH	SW8260
oluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Γotal Xylenes	ND	1.0	ug/L	1	05/01/15	MH	SW8260
rans-1,2-Dichloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
rans-1,3-Dichloropropene	ND	0.40	ug/L	1	05/01/15	MH	SW8260
rans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	05/01/15	MH	SW8260

Page 11 of 27 Ver 1

Client ID: 1176150429-04

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Trichloroethene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Vinyl chloride	ND	1.0	ug/L	1	05/01/15	MH	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	100		%	1	05/01/15	MH	70 - 130 %
% Bromofluorobenzene	99		%	1	05/01/15	MH	70 - 130 %
% Dibromofluoromethane	94		%	1	05/01/15	MH	70 - 130 %
% Toluene-d8	100		%	1	05/01/15	МН	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.11	ug/L	1	05/05/15	DD	SW8270D (SIM)
Acenaphthene	ND	0.11	ug/L	1	05/05/15	DD	SW8270D (SIM)
Acenaphthylene	ND	0.11	ug/L	1	05/05/15	DD	SW8270D (SIM)
Anthracene	ND	0.11	ug/L	1	05/05/15	DD	SW8270D (SIM)
Benz(a)anthracene	0.03	0.02	ug/L	1	05/05/15	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	0.02	ug/L	1	05/05/15	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.02	ug/L	1	05/05/15	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.11	ug/L	1	05/05/15	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.02	ug/L	1	05/05/15	DD	SW8270D (SIM)
Chrysene	ND	0.02	ug/L	1	05/05/15	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	05/05/15	DD	SW8270D (SIM)
Fluoranthene	ND	0.11	ug/L	1	05/05/15	DD	SW8270D (SIM)
Fluorene	ND	0.11	ug/L	1	05/05/15	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.02	ug/L	1	05/05/15	DD	SW8270D (SIM)
Naphthalene	ND	0.11	ug/L	1	05/05/15	DD	SW8270D (SIM)
Phenanthrene	ND	0.07	ug/L	1	05/05/15	DD	SW8270D (SIM)
Pyrene	ND	0.11	ug/L	1	05/05/15	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	75		%	1	05/05/15	DD	30 - 130 %
% Nitrobenzene-d5	89		%	1	05/05/15	DD	30 - 130 %
% Terphenyl-d14	59		%	1	05/05/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 07, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 12 of 27 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 07, 2015

FOR: Attn: Ms Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information **Custody Information** Date Time DC 04/29/15 Matrix: **GROUND WATER** Collected by: 14:28 Received by: Location Code: F&O LK 04/30/15 11:10

Rush Request: Standard Analyzed by: see "By" below

RL/

P.O.#: 20110037.A11 Laboratory Data

SDG ID: GBJ10075 Phoenix ID: BJ10079

Project ID: EAST HAMPTON BROWNFIELDS

Client ID: 1176150429-05

Parameter **PQL** Result Units Dilution Date/Time By Reference 04/30/15 Extraction of CT ETPH Completed ET SW3510C/SW3520C Semi-Volatile Extraction Completed 05/01/15 E/E SW3520C TPH by GC (Extractable Products) JRB Ext. Petroleum HC ND 0.070 mg/L 1 05/02/15 CTETPH 8015D ND 1 Identification mg/L 05/02/15 JRB CTETPH 8015D **QA/QC Surrogates** % n-Pentacosane 73 % 05/02/15 **JRB** 50 - 150 % Volatiles 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 05/01/15 MH SW8260 ND 1,1,1-Trichloroethane 1.0 ug/L 1 05/01/15 MH SW8260 ND 0.50 ug/L 1 05/01/15 МН SW8260 1,1,2,2-Tetrachloroethane SW8260 ND 1.0 ug/L 1 05/01/15 MH 1,1,2-Trichloroethane ND 05/01/15 SW8260 1.0 ua/L 1 MH 1,1-Dichloroethane SW8260 1,1-Dichloroethene ND 1.0 ug/L 05/01/15 MH ND 05/01/15 SW8260 1.0 ug/L 1 MH 1,1-Dichloropropene SW8260 ND 1 05/01/15 1.0 ug/L MH 1,2,3-Trichlorobenzene ND 1 0 ug/L 1 05/01/15 МН SW8260 1,2,3-Trichloropropane SW8260 ND 1.0 ug/L 1 05/01/15 MH 1,2,4-Trichlorobenzene ND 05/01/15 MH SW8260 1,2,4-Trimethylbenzene 1.0 ug/L 1 SW8260 1,2-Dibromo-3-chloropropane ND 1.0 ug/L 1 05/01/15 MH SW8260 ND 1 05/01/15 1,2-Dibromoethane 1.0 ug/L MH SW8260 ND 1.0 ug/L 1 05/01/15 MH 1.2-Dichlorobenzene ND 0.60 1 05/01/15 МН SW8260 ug/L 1,2-Dichloroethane SW8260 ND 1.0 ug/L 1 05/01/15 MH 1,2-Dichloropropane ND 1.0 1 05/01/15 SW8260 1,3,5-Trimethylbenzene ug/L SW8260 1,3-Dichlorobenzene ND 1.0 ug/L 1 05/01/15 MH

Page 13 of 27 Ver 1

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,3-Dichloropropane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
2-Hexanone	ND	5.0	ug/L	1	05/01/15	МН	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	05/01/15	МН	SW8260
Acetone	ND	25	ug/L	1	05/01/15	МН	SW8260
Acrylonitrile	ND	5.0	ug/L	1	05/01/15	MH	SW8260
Benzene	ND	0.70	ug/L	1	05/01/15	МН	SW8260
Bromobenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Bromochloromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	05/01/15	MH	SW8260
Bromoform	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Bromomethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	05/01/15	MH	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Chlorobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Chloroethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Chloroform	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Chloromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	05/01/15	MH	SW8260
Dibromochloromethane	ND	0.50	ug/L	1	05/01/15	MH	SW8260
Dibromomethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Ethylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	1	05/01/15	MH	SW8260
Isopropylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
m&p-Xylene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	1	05/01/15	MH	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Methylene chloride	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Naphthalene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
n-Butylbenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
n-Propylbenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
o-Xylene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
sec-Butylbenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Styrene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
tert-Butylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Tetrachloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	05/01/15	MH	SW8260
Toluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Total Xylenes	ND	1.0	ug/L	1	05/01/15	MH	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	05/01/15	MH	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	05/01/15	МН	SW8260

Page 14 of 27 Ver 1

Client ID: 1176150429-05

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Trichloroethene	15	1.0	ug/L	1	05/01/15	МН	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Vinyl chloride	ND	1.0	ug/L	1	05/01/15	MH	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	103		%	1	05/01/15	MH	70 - 130 %
% Bromofluorobenzene	97		%	1	05/01/15	MH	70 - 130 %
% Dibromofluoromethane	94		%	1	05/01/15	MH	70 - 130 %
% Toluene-d8	99		%	1	05/01/15	MH	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Acenaphthene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Acenaphthylene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Anthracene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benz(a)anthracene	0.02	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benzo(b)fluoranthene	0.03	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Chrysene	0.02	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	05/02/15	DD	SW8270D (SIM)
Fluoranthene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Fluorene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Naphthalene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Phenanthrene	ND	0.07	ug/L	1	05/02/15	DD	SW8270D (SIM)
Pyrene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	58		%	1	05/02/15	DD	30 - 130 %
% Nitrobenzene-d5	67		%	1	05/02/15	DD	30 - 130 %
% Terphenyl-d14	85		%	1	05/02/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 07, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 15 of 27 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 07, 2015

FOR: Attn: Ms Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information **Custody Information** Date Time DC 04/29/15 Matrix: **GROUND WATER** Collected by: 15:30 Received by: Location Code: F&O LK 04/30/15 11:10

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20110037.A11 Laboratory Data

SDG ID: GBJ10075 Phoenix ID: BJ10080

Project ID: EAST HAMPTON BROWNFIELDS

Client ID: 1176150429-06

RL/ Parameter **PQL** Result Units Dilution Date/Time By Reference 04/30/15 Extraction of CT ETPH Completed ET SW3510C/SW3520C Semi-Volatile Extraction Completed 05/01/15 E/E SW3520C TPH by GC (Extractable Products) JRB Ext. Petroleum HC ND 0.072 mg/L 1 05/02/15 CTETPH 8015D ND 1 Identification mg/L 05/02/15 JRB CTETPH 8015D **QA/QC Surrogates** 82 % 05/02/15 % n-Pentacosane **JRB** 50 - 150 % Volatiles 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 05/01/15 MH SW8260 ND 1,1,1-Trichloroethane 1.0 ug/L 1 05/01/15 MH SW8260 ND 0.50 ug/L 1 05/01/15 МН SW8260 1,1,2,2-Tetrachloroethane ug/L SW8260 ND 1.0 1 05/01/15 MH 1,1,2-Trichloroethane ND 05/01/15 SW8260 1.0 ua/L 1 MH 1,1-Dichloroethane SW8260 1,1-Dichloroethene ND 1.0 ug/L 05/01/15 MH ND 05/01/15 SW8260 1.0 ug/L 1 MH 1,1-Dichloropropene SW8260 ND 1 05/01/15 1.0 ug/L MH 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 05/01/15 МН SW8260 1,2,3-Trichloropropane SW8260 ND 1.0 ug/L 1 05/01/15 MH 1,2,4-Trichlorobenzene ND 05/01/15 MH SW8260 1,2,4-Trimethylbenzene 1.0 ug/L 1 SW8260 1,2-Dibromo-3-chloropropane ND 1.0 ug/L 1 05/01/15 MH SW8260 ND 1 05/01/15 1,2-Dibromoethane 1.0 ug/L MH SW8260 ND 1.0 ug/L 1 05/01/15 MH 1.2-Dichlorobenzene ND 0.60 05/01/15 МН SW8260 ug/L 1 1,2-Dichloroethane SW8260 ND 1.0 ug/L 1 05/01/15 MH 1,2-Dichloropropane ND 1 05/01/15 SW8260 1,3,5-Trimethylbenzene 1.0 ug/L SW8260 1,3-Dichlorobenzene ND 1.0 ug/L 1 05/01/15 MH

Page 16 of 27 Ver 1

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
,3-Dichloropropane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
,4-Dichlorobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
,2-Dichloropropane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
-Chlorotoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
-Hexanone	ND	5.0	ug/L	1	05/01/15	MH	SW8260
-Isopropyltoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
-Chlorotoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
-Methyl-2-pentanone	ND	5.0	ug/L	1	05/01/15	MH	SW8260
cetone	ND	25	ug/L	1	05/01/15	MH	SW8260
crylonitrile	ND	5.0	ug/L	1	05/01/15	MH	SW8260
enzene	ND	0.70	ug/L	1	05/01/15	MH	SW8260
romobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
romochloromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
romodichloromethane	ND	0.50	ug/L	1	05/01/15	МН	SW8260
romoform	ND	1.0	ug/L	1	05/01/15	МН	SW8260
romomethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
arbon Disulfide	ND	5.0	ug/L	1	05/01/15	МН	SW8260
arbon tetrachloride	ND	1.0	ug/L	1	05/01/15	МН	SW8260
hlorobenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
hloroethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
nloroform	ND	1.0	ug/L	1	05/01/15	МН	SW8260
nloromethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
s-1,2-Dichloroethene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
s-1,3-Dichloropropene	ND	0.40	ug/L	1	05/01/15	МН	SW8260
bromochloromethane	ND	0.50	ug/L	1	05/01/15	MH	SW8260
bromomethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
chlorodifluoromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
:hylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
exachlorobutadiene	ND	0.40	ug/L	1	05/01/15	MH	SW8260
	ND	1.0	ug/L	1	05/01/15	MH	SW8260
opropylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
&p-Xylene	ND	5.0		1	05/01/15	MH	SW8260
ethyl ethyl ketone			ug/L				
ethyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	05/01/15	MH	SW8260
ethylene chloride	ND	1.0	ug/L	1	05/01/15	MH	SW8260
aphthalene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Butylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Propylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Xylene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Isopropyltoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
ec-Butylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
yrene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
rt-Butylbenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
etrachloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
etrahydrofuran (THF)	ND	2.5	ug/L	1	05/01/15	MH	SW8260
oluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
otal Xylenes	ND	1.0	ug/L	1	05/01/15	МН	SW8260
ans-1,2-Dichloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
ans-1,3-Dichloropropene	ND	0.40	ug/L	1	05/01/15	MH	SW8260
ans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	05/01/15	MH	SW8260

Page 17 of 27 Ver 1

Client ID: 1176150429-06

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Trichloroethene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Vinyl chloride	ND	1.0	ug/L	1	05/01/15	MH	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	101		%	1	05/01/15	MH	70 - 130 %
% Bromofluorobenzene	99		%	1	05/01/15	MH	70 - 130 %
% Dibromofluoromethane	99		%	1	05/01/15	MH	70 - 130 %
% Toluene-d8	98		%	1	05/01/15	МН	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.11	ug/L	1	05/02/15	DD	SW8270D (SIM)
Acenaphthene	ND	0.11	ug/L	1	05/02/15	DD	SW8270D (SIM)
Acenaphthylene	ND	0.11	ug/L	1	05/02/15	DD	SW8270D (SIM)
Anthracene	ND	0.11	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benz(a)anthracene	0.03	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benzo(a)pyrene	0.02	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benzo(b)fluoranthene	0.03	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.11	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Chrysene	0.02	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	05/02/15	DD	SW8270D (SIM)
Fluoranthene	ND	0.11	ug/L	1	05/02/15	DD	SW8270D (SIM)
Fluorene	ND	0.11	ug/L	1	05/02/15	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Naphthalene	ND	0.11	ug/L	1	05/02/15	DD	SW8270D (SIM)
Phenanthrene	ND	0.07	ug/L	1	05/02/15	DD	SW8270D (SIM)
Pyrene	ND	0.11	ug/L	1	05/02/15	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	63		%	1	05/02/15	DD	30 - 130 %
% Nitrobenzene-d5	73		%	1	05/02/15	DD	30 - 130 %
% Terphenyl-d14	89		%	1	05/02/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 07, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 18 of 27 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 07, 2015

FOR: Attn: Ms Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information **Custody Information** Date Time DC 04/29/15 Matrix: **GROUND WATER** Collected by: 16:14 Received by: Location Code: F&O LK 04/30/15 11:10

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20110037.A11

Laboratory Data SDG ID: GBJ10075

Phoenix ID: BJ10081

Project ID: EAST HAMPTON BROWNFIELDS

Client ID: 1176150429-07

RL/ Parameter **PQL** Result Units Dilution Date/Time By Reference 04/30/15 Extraction of CT ETPH Completed ET SW3510C/SW3520C Semi-Volatile Extraction Completed 05/01/15 E/E SW3520C TPH by GC (Extractable Products) JRB Ext. Petroleum HC ND 0.074 mg/L 1 05/02/15 CTETPH 8015D ND 1 Identification mg/L 05/02/15 JRB CTETPH 8015D **QA/QC Surrogates** 88 % 05/02/15 % n-Pentacosane **JRB** 50 - 150 % Volatiles 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 05/01/15 MH SW8260 ND 1,1,1-Trichloroethane 1.0 ug/L 1 05/01/15 MH SW8260 ND 0.50 ug/L 1 05/01/15 МН SW8260 1,1,2,2-Tetrachloroethane ug/L SW8260 ND 1.0 1 05/01/15 MH 1,1,2-Trichloroethane ND 05/01/15 SW8260 1.0 ua/L 1 MH 1,1-Dichloroethane SW8260 1,1-Dichloroethene ND 1.0 ug/L 05/01/15 MH ND 05/01/15 SW8260 1.0 ug/L 1 MH 1,1-Dichloropropene SW8260 ND 1 05/01/15 1.0 ug/L MH 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 05/01/15 МН SW8260 1,2,3-Trichloropropane SW8260 ND 1.0 ug/L 1 05/01/15 MH 1,2,4-Trichlorobenzene ND 05/01/15 MH SW8260 1,2,4-Trimethylbenzene 1.0 ug/L 1 SW8260 1,2-Dibromo-3-chloropropane ND 1.0 ug/L 1 05/01/15 MH SW8260 ND 1 05/01/15 1,2-Dibromoethane 1.0 ug/L MH SW8260 ND 1.0 ug/L 1 05/01/15 MH 1.2-Dichlorobenzene ND 0.60 05/01/15 МН SW8260 ug/L 1 1,2-Dichloroethane SW8260 ND 1.0 ug/L 1 05/01/15 MH 1,2-Dichloropropane ND 1 05/01/15 SW8260 1,3,5-Trimethylbenzene 1.0 ug/L SW8260 1,3-Dichlorobenzene ND 1.0 ug/L 1 05/01/15 MH

Page 19 of 27 Ver 1

Client	ID:	1176150429-07

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,3-Dichloropropane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
?-Hexanone	ND	5.0	ug/L	1	05/01/15	MH	SW8260
?-Isopropyltoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
-Chlorotoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
-Methyl-2-pentanone	ND	5.0	ug/L	1	05/01/15	MH	SW8260
cetone	ND	25	ug/L	1	05/01/15	MH	SW8260
crylonitrile	ND	5.0	ug/L	1	05/01/15	MH	SW8260
Benzene	ND	0.70	ug/L	1	05/01/15	MH	SW8260
Bromobenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
romochloromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	05/01/15	МН	SW8260
Bromoform	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Bromomethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	05/01/15	МН	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Chlorobenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Chloroethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Chloroform	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Chloromethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
is-1,2-Dichloroethene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
is-1,3-Dichloropropene	ND	0.40	ug/L	1	05/01/15	МН	SW8260
ibromochloromethane	ND	0.50	ug/L	1	05/01/15	MH	SW8260
bibromomethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
ichlorodifluoromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
thylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
lexachlorobutadiene	ND	0.40	ug/L	1	05/01/15	MH	SW8260
	ND	1.0	ug/L ug/L	1	05/01/15	MH	SW8260
sopropylbenzene							
n&p-Xylene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	1	05/01/15	MH	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Methylene chloride	ND	1.0	ug/L	1	05/01/15	MH	SW8260
laphthalene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
-Butylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
-Propylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
-Xylene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
-Isopropyltoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
ec-Butylbenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
tyrene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
ert-Butylbenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
etrachloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
etrahydrofuran (THF)	ND	2.5	ug/L	1	05/01/15	MH	SW8260
oluene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
otal Xylenes	ND	1.0	ug/L	1	05/01/15	MH	SW8260
rans-1,2-Dichloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
ans-1,3-Dichloropropene	ND	0.40	ug/L	1	05/01/15	МН	SW8260
rans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	05/01/15	MH	SW8260

Page 20 of 27 Ver 1

Client ID: 1176150429-07

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Trichloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Vinyl chloride	ND	1.0	ug/L	1	05/01/15	МН	SW8260
QA/QC Surrogates		-	3				
% 1,2-dichlorobenzene-d4	98		%	1	05/01/15	МН	70 - 130 %
% Bromofluorobenzene	96		%	1	05/01/15	МН	70 - 130 %
% Dibromofluoromethane	92		%	1	05/01/15	МН	70 - 130 %
% Toluene-d8	98		%	1	05/01/15	MH	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Acenaphthene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Acenaphthylene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Anthracene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Chrysene	ND	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	05/02/15	DD	SW8270D (SIM)
Fluoranthene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Fluorene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Naphthalene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Phenanthrene	ND	0.07	ug/L	1	05/02/15	DD	SW8270D (SIM)
Pyrene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	59		%	1	05/02/15	DD	30 - 130 %
% Nitrobenzene-d5	68		%	1	05/02/15	DD	30 - 130 %
% Terphenyl-d14	82		%	1	05/02/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 07, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 21 of 27 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 07, 2015

FOR: Attn: Ms Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information **Custody Information** Date Time DC 04/29/15 Matrix: **GROUND WATER** Collected by: 16:50 Received by: Location Code: F&O LK 04/30/15 11:10

Rush Request: Standard Analyzed by: see "By" below

RL/

P.O.#: 20110037.A11

Laboratory Data SDG ID: GBJ10075

Phoenix ID: BJ10082

Project ID: EAST HAMPTON BROWNFIELDS

Client ID: 1176150429-08

Parameter **PQL** Result Units Dilution Date/Time By Reference 04/30/15 Extraction of CT ETPH Completed ET SW3510C/SW3520C Semi-Volatile Extraction Completed 05/01/15 E/E SW3520C TPH by GC (Extractable Products) JRB Ext. Petroleum HC ND 0.074 mg/L 1 05/02/15 CTETPH 8015D ND 1 Identification mg/L 05/02/15 JRB CTETPH 8015D **QA/QC Surrogates** 98 % 05/02/15 % n-Pentacosane **JRB** 50 - 150 % Volatiles 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 05/01/15 MH SW8260 ND 1,1,1-Trichloroethane 1.0 ug/L 1 05/01/15 MH SW8260 ND 0.50 ug/L 1 05/01/15 МН SW8260 1,1,2,2-Tetrachloroethane ug/L SW8260 ND 1.0 1 05/01/15 MH 1,1,2-Trichloroethane ND 05/01/15 SW8260 1.0 ua/L 1 MH 1,1-Dichloroethane SW8260 1,1-Dichloroethene ND 1.0 ug/L 05/01/15 MH ND 05/01/15 SW8260 1.0 ug/L 1 MH 1,1-Dichloropropene SW8260 ND 1 05/01/15 1.0 ug/L MH 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 05/01/15 МН SW8260 1,2,3-Trichloropropane SW8260 ND 1.0 ug/L 1 05/01/15 MH 1,2,4-Trichlorobenzene ND 05/01/15 MH SW8260 1,2,4-Trimethylbenzene 1.0 ug/L 1 SW8260 1,2-Dibromo-3-chloropropane ND 1.0 ug/L 1 05/01/15 MH SW8260 ND 1 05/01/15 1,2-Dibromoethane 1.0 ug/L MH SW8260 ND 1.0 ug/L 1 05/01/15 MH 1.2-Dichlorobenzene ND 0.60 05/01/15 МН SW8260 ug/L 1 1,2-Dichloroethane SW8260 ND 1.0 ug/L 1 05/01/15 MH 1,2-Dichloropropane ND 1 05/01/15 SW8260 1,3,5-Trimethylbenzene 1.0 ug/L SW8260 1,3-Dichlorobenzene ND 1.0 ug/L 1 05/01/15 MH

Page 22 of 27 Ver 1

Client ID: 1176150429-0		RL/				_	
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
1,3-Dichloropropane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
2-Hexanone	ND	5.0	ug/L	1	05/01/15	MH	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	05/01/15	MH	SW8260
Acetone	ND	25	ug/L	1	05/01/15	MH	SW8260
Acrylonitrile	ND	5.0	ug/L	1	05/01/15	MH	SW8260
Benzene	ND	0.70	ug/L	1	05/01/15	MH	SW8260
Bromobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Bromochloromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	05/01/15	MH	SW8260
Bromoform	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Bromomethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	05/01/15	МН	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Chlorobenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Chloroethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Chloroform	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Chloromethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	05/01/15	MH	SW8260
Dibromochloromethane	ND	0.50	ug/L	1	05/01/15	MH	SW8260
Dibromomethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Ethylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	1	05/01/15	MH	SW8260
Isopropylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
	ND	1.0	ug/L	1	05/01/15	MH	SW8260
m&p-Xylene	ND	5.0	_	1	05/01/15	MH	SW8260
Methyl ethyl ketone	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Methylene chloride			ug/L				
Naphthalene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
n-Butylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
n-Propylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
o-Xylene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
sec-Butylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Styrene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
tert-Butylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Tetrachloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	05/01/15	MH	SW8260
Toluene	49	5.0	ug/L	5	05/01/15	MH	SW8260
Total Xylenes	ND	1.0	ug/L	1	05/01/15	MH	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	05/01/15	MH	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	05/01/15	MH	SW8260

Page 23 of 27 Ver 1

Client ID: 1176150429-08

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Trichloroethene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Vinyl chloride	ND	1.0	ug/L	1	05/01/15	MH	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	100		%	1	05/01/15	MH	70 - 130 %
% Bromofluorobenzene	99		%	1	05/01/15	MH	70 - 130 %
% Dibromofluoromethane	94		%	1	05/01/15	MH	70 - 130 %
% Toluene-d8	99		%	1	05/01/15	MH	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Acenaphthene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Acenaphthylene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Anthracene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benz(a)anthracene	0.03	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benzo(a)pyrene	0.03	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benzo(b)fluoranthene	0.04	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Chrysene	0.03	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	05/02/15	DD	SW8270D (SIM)
Fluoranthene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Fluorene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Naphthalene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Phenanthrene	ND	0.07	ug/L	1	05/02/15	DD	SW8270D (SIM)
Pyrene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	51		%	1	05/02/15	DD	30 - 130 %
% Nitrobenzene-d5	55		%	1	05/02/15	DD	30 - 130 %
% Terphenyl-d14	88		%	1	05/02/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 07, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 24 of 27 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 07, 2015

FOR: Attn: Ms Stephanie Wierszchalek

Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information **Custody Information** <u>Time</u> Date **GROUND WATER** Collected by: DC 04/29/15 18:08 Matrix: F&O Received by: LK 04/30/15 **Location Code:** 11:10

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 20110037.A11

<u>Laboratory Data</u> SDG ID: GBJ10075

Phoenix ID: BJ10083

Project ID: EAST HAMPTON BROWNFIELDS

Client ID: 1176150429-09

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction of CT ETPH	Completed				05/01/15	W/W	SW3510C/SW3520C
Semi-Volatile Extraction	Completed				05/01/15	E/E	SW3520C
TPH by GC (Extractable	Products	<u>s)</u>					
Ext. Petroleum HC	ND	0.070	mg/L	1	05/01/15	JRB	CTETPH 8015D
Identification	ND		mg/L	1	05/01/15	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	64		%	1	05/01/15	JRB	50 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	05/01/15	MH	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,2-Dibromoethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	05/01/15	MH	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260

Page 25 of 27 Ver 1

Client ID: 1176150429-09

,3-Dichloropropane		PQL	Units	Dilution	Date/Time	Ву	Reference
	ND	1.0	ug/L	1	05/01/15	МН	SW8260
,4-Dichlorobenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
,2-Dichloropropane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
-Chlorotoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
-Hexanone	ND	5.0	ug/L	1	05/01/15	MH	SW8260
-Isopropyltoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
-Chlorotoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Methyl-2-pentanone	ND	5.0	ug/L	1	05/01/15	MH	SW8260
cetone	ND	25	ug/L	1	05/01/15	MH	SW8260
crylonitrile	ND	5.0	ug/L	1	05/01/15	MH	SW8260
enzene	ND	0.70	ug/L	1	05/01/15	MH	SW8260
romobenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
romochloromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
romodichloromethane	ND	0.50	ug/L	1	05/01/15	МН	SW8260
romoform	ND	1.0	ug/L	1	05/01/15	МН	SW8260
romomethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
arbon Disulfide	ND	5.0	ug/L	1	05/01/15	МН	SW8260
arbon tetrachloride	ND	1.0	ug/L	1	05/01/15	МН	SW8260
hlorobenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
hloroethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
nloroform	ND	1.0	ug/L	1	05/01/15	МН	SW8260
nloromethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
s-1,2-Dichloroethene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
s-1,3-Dichloropropene	ND	0.40	ug/L	1	05/01/15	МН	SW8260
bromochloromethane	ND	0.50	ug/L	1	05/01/15	МН	SW8260
bromomethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
chlorodifluoromethane	ND	1.0	ug/L	1	05/01/15	МН	SW8260
hylbenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
exachlorobutadiene	ND	0.40	ug/L	1	05/01/15	МН	SW8260
opropylbenzene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
&p-Xylene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
ethyl ethyl ketone	ND	5.0	ug/L	1	05/01/15	МН	SW8260
ethyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	05/01/15	MH	SW8260
ethylene chloride	ND	1.0	ug/L	1	05/01/15	MH	SW8260
aphthalene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Butylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Propylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Xylene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Isopropyltoluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
ec-Butylbenzene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
yrene	ND	1.0	ug/L ug/L	1	05/01/15	MH	SW8260
<u>-</u>	ND	1.0	ug/L ug/L	1	05/01/15	МН	SW8260
rt-Butylbenzene etrachloroethene	ND	1.0	ug/L ug/L	1	05/01/15	МН	SW8260
	ND	2.5			05/01/15	MH	SW8260
etrahydrofuran (THF)			ug/L	1			
oluene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
otal Xylenes	ND	1.0	ug/L	1	05/01/15	MH	SW8260
ans-1,2-Dichloroethene	ND	1.0	ug/L	1	05/01/15	MH	SW8260
ans-1,3-Dichloropropene ans-1,4-dichloro-2-butene	ND ND	0.40 5.0	ug/L ug/L	1 1	05/01/15 05/01/15	MH MH	SW8260 SW8260

Page 26 of 27 Ver 1

Client ID: 1176150429-09

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Trichloroethene	ND	1.0	ug/L	1	05/01/15	МН	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	05/01/15	MH	SW8260
Vinyl chloride	ND	1.0	ug/L	1	05/01/15	MH	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	101		%	1	05/01/15	MH	70 - 130 %
% Bromofluorobenzene	100		%	1	05/01/15	MH	70 - 130 %
% Dibromofluoromethane	97		%	1	05/01/15	MH	70 - 130 %
% Toluene-d8	98		%	1	05/01/15	MH	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Acenaphthene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Acenaphthylene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Anthracene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benz(a)anthracene	0.04	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benzo(a)pyrene	0.03	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benzo(b)fluoranthene	0.04	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Chrysene	0.04	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	05/02/15	DD	SW8270D (SIM)
Fluoranthene	0.15	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Fluorene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.02	ug/L	1	05/02/15	DD	SW8270D (SIM)
Naphthalene	ND	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
Phenanthrene	0.10	0.07	ug/L	1	05/02/15	DD	SW8270D (SIM)
Pyrene	0.17	0.10	ug/L	1	05/02/15	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	59		%	1	05/02/15	DD	30 - 130 %
% Nitrobenzene-d5	70		%	1	05/02/15	DD	30 - 130 %
% Terphenyl-d14	86		%	1	05/02/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 07, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 27 of 27 Ver 1

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

May 07, 2015

QA/QC Data

SDG I.D.: GBJ10075

may 07, 2010								3001	.D C	303 100	, 5	
Parameter	Blank	BIk RL	l	_CS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 306505 (mg/L),	QC Samp	ole No: BJ09503	(BJ10076, BJ100	77, B.	J10078,	BJ100	79, BJ1	10080, E	3J1008	31, BJ10	082)	
TPH by GC (Extractable	-			·	•		•	•			,	
Ext. Petroleum HC	ND	0.070		71	82	14.4	76	72	5.4	60 - 120	30	
% n-Pentacosane	91	%		94	108	13.9	97	91	6.4	50 - 150	20	
QA/QC Batch 306739 (ug/L), BJ10082 (1X, 5X), BJ10083)	QC Samp	le No: BJ10073 (BJ10075, BJ1007	6, BJ	110077,	BJ1007	'8, BJ1	0079, B	J1008	0, BJ100	081,	
Volatiles - Ground Wate	<u>r</u>											
1,1,1,2-Tetrachloroethane	- ND	1.0		90	104	14.4	92	102	10.3	70 - 130	30	
1,1,1-Trichloroethane	ND	1.0		80	93	15.0	95	96	1.0	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	0.50		83	99	17.6	78	97	21.7	70 - 130	30	
1,1,2-Trichloroethane	ND	1.0		85	98	14.2	79	102	25.4	70 - 130	30	
1,1-Dichloroethane	ND	1.0		82	94	13.6	95	98	3.1	70 - 130	30	
1,1-Dichloroethene	ND	1.0		76	88	14.6	93	92	1.1	70 - 130	30	
1,1-Dichloropropene	ND	1.0		80	93	15.0	99	96	3.1	70 - 130	30	
1,2,3-Trichlorobenzene	ND	1.0		93	107	14.0	82	110	29.2	70 - 130	30	
1,2,3-Trichloropropane	ND	1.0		80	93	15.0	79	98	21.5	70 - 130	30	
1,2,4-Trichlorobenzene	ND	1.0		94	110	15.7	88	112	24.0	70 - 130	30	
1,2,4-Trimethylbenzene	ND	1.0		92	109	16.9	112	110	1.8	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	1.0		82	96	15.7	76	103	30.2	70 - 130	30	
1,2-Dibromoethane	ND	1.0		88	103	15.7	82	105	24.6	70 - 130	30	
1,2-Dichlorobenzene	ND	1.0		88	102	14.7	90	101	11.5	70 - 130	30	
1,2-Dichloroethane	ND	1.0		85	98	14.2	86	104	18.9	70 - 130	30	
1,2-Dichloropropane	ND	1.0		85	98	14.2	89	99	10.6	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0		95	110	14.6	115	108	6.3	70 - 130	30	
1,3-Dichlorobenzene	ND	1.0		87	100	13.9	94	99	5.2	70 - 130	30	
1,3-Dichloropropane	ND	1.0		88	103	15.7	88	102	14.7	70 - 130	30	
1,4-Dichlorobenzene	ND	1.0		87	101	14.9	94	100	6.2	70 - 130	30	
2,2-Dichloropropane	ND	1.0		79	93	16.3	99	99	0.0	70 - 130	30	
2-Chlorotoluene	ND	1.0		84 84	96	13.3	99	96 107	3.1	70 - 130	30	
2-Hexanone	ND ND	5.0 1.0		89	96 105	13.3 16.5	76 106	107 103	33.9 2.9	70 - 130 70 - 130	30 30	r
2-Isopropyltoluene 4-Chlorotoluene	ND ND	1.0		85	99	15.2	100	100	1.0	70 - 130	30	
4-Methyl-2-pentanone	ND	5.0		81	94	14.9	72	104	36.4	70 - 130	30	_
Acetone	ND	5.0		83	106	24.3	72 78	84	7.4	70 - 130	30	r
Acrylonitrile	ND	5.0		85	98	14.2	77	105	30.8	70 - 130	30	r
Benzene	ND	0.70		85	98	14.2	96	98	2.1	70 - 130	30	'
Bromobenzene	ND	1.0		82	96	15.7	89	95	6.5	70 - 130	30	
Bromochloromethane	ND	1.0		86	100	15.7	84	103	20.3	70 - 130	30	
Bromodichloromethane	ND	0.50		90	105	15.4	87	103	16.8	70 - 130	30	
Bromoform	ND	1.0		92	109	16.9	81	104	24.9	70 - 130	30	
Bromomethane	ND	1.0		71	81	13.2	87	93	6.7	70 - 130	30	
Carbon Disulfide	ND	1.0		80	94	16.1	99	94	5.2	70 - 130	30	
Carbon tetrachloride	ND	1.0		80	93	15.0	95	95	0.0	70 - 130	30	

QA/QC Data

SDG I.D.: GBJ10075

% % RPD LCS Blk LCS **LCSD** MS MSD MS Rec Blank RL % **RPD** % % **RPD** Limits Limits % Parameter 15.1 97 Chlorobenzene ND 1.0 86 100 100 3.0 70 - 130 30 Chloroethane ND 1.0 71 82 14.4 96 93 3.2 70 - 130 30 ND 97 99 Chloroform 1.0 84 14.4 91 8.4 70 - 130 30 Chloromethane ND 1.0 65 75 14.3 90 90 0.0 70 - 130 30 cis-1,2-Dichloroethene ND 1.0 85 100 16.2 88 100 12.8 70 - 130 30 cis-1,3-Dichloropropene ND 0.40 90 104 14.4 86 102 17.0 70 - 130 30 Dibromochloromethane ND 0.50 95 112 16.4 89 105 16.5 70 - 130 30 Dibromomethane ND 1.0 87 100 13.9 102 84 19.4 70 - 130 30 Dichlorodifluoromethane ND 1.0 61 70 13.7 82 84 2.4 70 - 130 30 ı ND 87 101 14.9 102 97 Ethylbenzene 1.0 5.0 70 - 130 30 Hexachlorobutadiene ND 0.40 83 96 14.5 97 96 1.0 70 - 130 30 ND 1.0 79 93 16.3 101 92 9.3 Isopropylbenzene 70 - 130 30 ND 1.0 88 102 14.7 104 101 2.9 m&p-Xylene 70 - 130 30 ND 74 85 Methyl ethyl ketone 5.0 13.8 60 86 35.6 70 - 130 30 m,r Methyl t-butyl ether (MTBE) 91 ND 1.0 104 13.3 76 105 32.0 70 - 130 30 Methylene chloride ND 1.0 78 91 15.4 82 94 13.6 70 - 130 30 Naphthalene ND 1.0 97 113 15.2 80 114 35.1 70 - 130 30 ND 101 n-Butylbenzene 1.0 84 18.4 108 104 3.8 70 - 130 30 n-Propylbenzene ND 1.0 78 91 15.4 105 94 11.1 70 - 130 30 o-Xylene ND 1.0 90 104 14.4 101 101 0.0 70 - 130 30 p-Isopropyltoluene ND 1.0 89 103 14.6 109 104 4.7 70 - 130 30 sec-Butylbenzene ND 1.0 86 99 14.1 104 97 7.0 70 - 130 30 ND 1.0 89 104 15.5 96 101 5.1 70 - 130 30 Styrene tert-Butylbenzene ND 1.0 82 97 16.8 103 92 70 - 130 30 11.3 97 Tetrachloroethene ND 95 70 - 130 1.0 84 14.4 103 8.1 30 Tetrahydrofuran (THF) ND 2.5 76 88 14.6 64 97 41.0 70 - 130 30 m r Toluene ND 1.0 84 98 15.4 96 96 0.0 70 - 130 30 trans-1,2-Dichloroethene ND 1.0 84 99 16.4 96 97 1.0 70 - 130 30 30 90 trans-1,3-Dichloropropene ND 0.40 106 16.3 82 104 23.7 70 - 130 trans-1,4-dichloro-2-butene ND 5.0 84 100 17.4 77 96 22.0 70 - 130 30 99 Trichloroethene ND 1.0 84 98 15.4 98 1.0 70 - 130 30 Trichlorofluoromethane ND 1.0 66 77 15.4 87 88 1.1 70 - 130 30 Trichlorotrifluoroethane ND 1.0 73 84 14.0 87 88 1.1 70 - 130 30 Vinyl chloride ND 1.0 71 84 16.8 91 90 1.1 70 - 130 30 96 99 % 1,2-dichlorobenzene-d4 % 100 1.0 96 101 5.1 70 - 130 30 % Bromofluorobenzene 94 % 104 104 0.0 99 104 4.9 70 - 130 30 % Dibromofluoromethane 88 % 97 96 1.0 90 98 8.5 70 - 130 30 % Toluene-d8 98 100 99 99 % 1.0 98 1.0 70 - 13030 Comment:

A blank MS/MSD was analyzed with this batch.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 306455 (ug/L), QC Sample No: BJ10073 (BJ10076, BJ10077, BJ10078)

Polynuclear Aromatic HC - Ground Water 2-Methylnaphthalene ND 0.05 70 68 2.9 30 - 13020 Acenaphthene ND 0.05 80 75 6.5 20 30 - 130Acenaphthylene ND 0.04 63 59 6.6 30 - 130 20 Anthracene ND 0.05 86 82 4.8 30 - 130 20 ND 0.02 81 76 Benz(a)anthracene 6.4 30 - 130 20 ND 0.02 75 72 Benzo(a)pyrene 4.1 30 - 130 20 79 Benzo(b)fluoranthene ND 0.02 82 3.7 30 - 130 20 Benzo(ghi)perylene ND 0.05 65 64 1.6 30 - 130 20 Benzo(k)fluoranthene ND 0.02 82 78 5.0 30 - 130 20

QA/QC Data

SDG I.D.: GBJ10075

% % Blk LCSD RPD LCS LCS MS MSD MS Rec RPD Blank RL % % % **RPD** Limits Limits % Parameter ND 0.02 78 Chrysene 83 6.2 30 - 130 20 Dibenz(a,h)anthracene ND 0.01 2.9 69 67 30 - 130 20 79 Fluoranthene ND 0.05 83 4.9 30 - 130 20 Fluorene ND 0.05 90 84 6.9 30 - 130 20 Indeno(1,2,3-cd)pyrene ND 0.02 55 53 3.7 30 - 130 20 Naphthalene ND 0.05 67 65 3.0 30 - 130 20 Phenanthrene ND 0.05 80 77 3.8 30 - 130 20 ND 0.05 87 81 7.1 Pyrene 30 - 130 20 % 2-Fluorobiphenyl 66 % 71 67 5.8 30 - 130 20 % Nitrobenzene-d5 84 % 70 69 1.4 30 - 130 20 % Terphenyl-d14 90 % 96 88 8.7 30 - 130 Comment:

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Batch 306605 (ug/L), QC Sample No: BJ10079 (BJ10079, BJ10080, BJ10081, BJ10082, BJ10083)

Polynuclear Aromatic HC - Ground Water

2-Methylnaphthalene	ND	0.05	56	55	1.8	30 - 130	20
Acenaphthene	ND	0.05	68	68	0.0	30 - 130	20
Acenaphthylene	ND	0.04	54	54	0.0	30 - 130	20
Anthracene	ND	0.05	80	80	0.0	30 - 130	20
Benz(a)anthracene	ND	0.02	75	76	1.3	30 - 130	20
Benzo(a)pyrene	ND	0.02	74	73	1.4	30 - 130	20
Benzo(b)fluoranthene	ND	0.02	76	76	0.0	30 - 130	20
Benzo(ghi)perylene	ND	0.05	65	64	1.6	30 - 130	20
Benzo(k)fluoranthene	ND	0.02	75	77	2.6	30 - 130	20
Chrysene	ND	0.02	78	77	1.3	30 - 130	20
Dibenz(a,h)anthracene	ND	0.01	68	67	1.5	30 - 130	20
Fluoranthene	ND	0.05	76	76	0.0	30 - 130	20
Fluorene	ND	0.05	79	77	2.6	30 - 130	20
Indeno(1,2,3-cd)pyrene	ND	0.02	56	55	1.8	30 - 130	20
Naphthalene	ND	0.05	51	51	0.0	30 - 130	20
Phenanthrene	ND	0.05	73	73	0.0	30 - 130	20
Pyrene	ND	0.05	79	79	0.0	30 - 130	20
% 2-Fluorobiphenyl	57	%	61	62	1.6	30 - 130	20
% Nitrobenzene-d5	67	%	60	60	0.0	30 - 130	20
% Terphenyl-d14	74	%	88	88	0.0	30 - 130	20

Comment:

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Batch 306552 (mg/L), QC Sample No: BJ10230 (BJ10083)

TPH by GC (Extractable Products) - Ground Water

Ext. Petroleum HC	ND	0.070	60	61	1.7	53	68	24.8 60 - 120 30
% n-Pentacosane	81	%	90	83	8.1	71	83	15.6 50 - 150 20

I = This parameter is outside laboratory lcs/lcsd specified recovery limits.

m = This parameter is outside laboratory ms/msd specified recovery limits.

r = This parameter is outside laboratory rpd specified recovery limits.

QA/QC Data

SDG I.D.: GBJ10075

% RPD Blk LCS LCSD LCS MS MSD MS Rec Blank RL % % RPD % % RPD Limits Limits Parameter

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

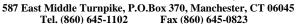
May 07, 2015

Thursday, May 07, 2015 Page 1 of 1 **Sample Criteria Exceedences Report**

GBJ10075 - FO

State: CT

Criteria: CT: GWP, RV, SWP


State:	CT						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BJ10075	\$8260GWR	Acrylonitrile	CT / VOLATILE ORGANIC COMPOUND / GWPC (µg/L)	ND	5.0	0.5	0.5	ug/L
BJ10075	\$8260GWR	1,2-Dibromoethane	CT / VOLATILE ORGANIC COMPOUND / GWPC (µg/L)	ND	1.0	0.05	0.05	ug/L
BJ10076	\$8260GWR	1,2-Dibromoethane	CT / VOLATILE ORGANIC COMPOUND / GWPC (µg/L)	ND	1.0	0.05	0.05	ug/L
BJ10076	\$8260GWR	Acrylonitrile	CT / VOLATILE ORGANIC COMPOUND / GWPC (μg/L)	ND	5.0	0.5	0.5	ug/L
BJ10077	\$8260GWR	1,2-Dibromoethane	CT / VOLATILE ORGANIC COMPOUND / GWPC (µg/L)	ND	1.0	0.05	0.05	ug/L
BJ10077	\$8260GWR	Acrylonitrile	CT / VOLATILE ORGANIC COMPOUND / GWPC (µg/L)	ND	5.0	0.5	0.5	ug/L
BJ10078	\$8260GWR	1,2-Dibromoethane	CT / VOLATILE ORGANIC COMPOUND / GWPC (µg/L)	ND	1.0	0.05	0.05	ug/L
BJ10078	\$8260GWR	Acrylonitrile	CT / VOLATILE ORGANIC COMPOUND / GWPC (µg/L)	ND	5.0	0.5	0.5	ug/L
BJ10079	\$8260GWR	Trichloroethene	CT / VOLATILE ORGANIC COMPOUND / GWPC (µg/L)	15	1.0	5	5	ug/L
BJ10079	\$8260GWR	Acrylonitrile	CT / VOLATILE ORGANIC COMPOUND / GWPC (μ g/L)	ND	5.0	0.5	0.5	ug/L
BJ10079	\$8260GWR	1,2-Dibromoethane	CT / VOLATILE ORGANIC COMPOUND / GWPC (μg/L)	ND	1.0	0.05	0.05	ug/L
BJ10080	\$8260GWR	1,2-Dibromoethane	CT / VOLATILE ORGANIC COMPOUND / GWPC (µg/L)	ND	1.0	0.05	0.05	ug/L
BJ10080	\$8260GWR	Acrylonitrile	CT / VOLATILE ORGANIC COMPOUND / GWPC (µg/L)	ND	5.0	0.5	0.5	ug/L
BJ10081	\$8260GWR	1,2-Dibromoethane	CT / VOLATILE ORGANIC COMPOUND / GWPC (µg/L)	ND	1.0	0.05	0.05	ug/L
BJ10081	\$8260GWR	Acrylonitrile	CT / VOLATILE ORGANIC COMPOUND / GWPC (μg/L)	ND	5.0	0.5	0.5	ug/L
BJ10082	\$8260GWR	1,2-Dibromoethane	CT / VOLATILE ORGANIC COMPOUND / GWPC (µg/L)	ND	1.0	0.05	0.05	ug/L
BJ10082	\$8260GWR	Acrylonitrile	CT / VOLATILE ORGANIC COMPOUND / GWPC (μg/L)	ND	5.0	0.5	0.5	ug/L
BJ10083	\$8100SIMR	Phenanthrene	CT / SEMIVOLATILE ORGANIC COMP / SWPC (µg/L)	0.10	0.07	0.077	0.077	ug/L
BJ10083	\$8260GWR	Acrylonitrile	CT / VOLATILE ORGANIC COMPOUND / GWPC (µg/L)	ND	5.0	0.5	0.5	ug/L
BJ10083	\$8260GWR	1,2-Dibromoethane	CT / VOLATILE ORGANIC COMPOUND / GWPC (µg/L)	ND	1.0	0.05	0.05	ug/L

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Laboratory Name: Phoenix Environmental Labs, Inc. Client:								ss & O'Neill,	Inc.			
Proje	ect Location:	EAST HA	AMPTON	BROWNF	IELD	Project N	Number:					
Labo	ratory Sample		3J10075, 3J10083	BJ10076, E	3J1007	7, BJ1007	78, BJ10079, B	J10080, BJ	10081, B	J10082,		
Samı	pling Date(s):	4/29/201	5									
RCP	Methods Used	l:										
13	311/1312	10	7000	7196	7	470/7471	8081	☐ EPH		TO15		
<u> </u>	82 🗌 815	51	8260	✓ 8270	✓ E	TPH	9010/9012	☐ VPH				
1.	specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents? ✓ Yes □ No											
1a.	Were the method	d specified	l preserva	ition and hold	ling tim	e requirem	ents met?	✓ Yes	□No			
	EPH and VPH m significant modifi							□ Yes	□No	✓ NA		
2.	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)? ✓ Yes □ No											
3.	Were samples re	eceived at	an approp	priate temper	ature (< 6 Degree	s C)?	✓ Yes	\square No	□NA		
4.	Were all QA/QC Protocol docume						Confidence	□ Yes	✓ No			
5a.	Were reporting li	imits speci	fied or ref	ferenced on t	he chai	n-of-custod	dy?	✓ Yes	□No			
5b.	Were these repo	rting limits	met?					□ Yes	✓ No	□NA		
6.	For each analytic results reported presented in the	for all cons	stituents id	dentified in th	e meth	od-specific		□ Yes	✓ No	□NA		
7.	Are project-spec	ific matrix	spikes an	d laboratory	duplica	tes include	d in the data set	?	✓ No	□NA		
Note:	Note: For all questions to which the response was "No" (with the exception of question #5a, #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence".											
and	I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.											
۸4۱	borizod			_			Date: Thur	sday, May 0	7, 2015			
	horized nature:	the	en :	See		Printe	ed Name: Etha	n Lee				
	Position: Project Manager											

RCP Certification Report

May 07, 2015

SDG I.D.: GBJ10075

8270 Semi-volatile Organics:

The client requested a short list for 8270 RCP Semivolatile. Only the PAH constituents are reported as requested on the chain-of-custody.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

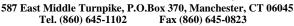
Instrument: <u>Au-fid84 05/01/15-1 (BJ10083)</u>

Initial Calibration (FID84 - ETPH_413) - The initial calibration curve was within method criteria and had a %RSD less than 30%.

As per section 7.2.3, a discrimination check standard was run and contained the following outliers: none

Printed Name Jeff Bucko
Position: Chemist
Date: 5/1/2015

Instrument: Au-xl2 05/01/15-2 (BJ10076, BJ10077, BJ10078, BJ10079, BJ10080, BJ10081,


BJ10082)

Initial Calibration (FID1 - ETPH_1) - The initial calibration curve was within method criteria and had a %RSD less than 30%.

As per section 7.2.3, a discrimination check standard was run and contained the following outliers: C36

Printed Name Jeff Bucko **Position:** Chemist **Date:** 5/1/2015

RCP Certification Report

May 07, 2015

SDG I.D.: GBJ10075

QC (Batch Specific)

----- Sample No: BJ09503, QA/QC Batch: 306505 -----

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

----- Sample No: BJ10230, QA/QC Batch: 306552 -----

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

SVOASIM Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Chem04 05/01/15-1 (BJ10077, BJ10078)

The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

In the event that lower detection levels were requested, the samples may have been analyzed by selective ion monitoring (SIM) mode.

If PAH/base neutral were requested, Phoenix utilized a method that contained a shortened list, so some of the compounds in the narrative may be non-applicable. Initial Calibration Verification (CHEM04/SIM_0428):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM04/0501_02-SIM_0428):

100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 2-nitrophenol (.064)[0.1]

The following compounds did not meet minimum response factors: None.

Printed Name Damien Drobinski

Position: Chemist **Date:** 5/1/2015

Instrument: Chem04 05/05/15-1 (BJ10078)

The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

May 07, 2015

SDG I.D.: GBJ10075

In the event that lower detection levels were requested, the samples may have been analyzed by selective ion monitoring (SIM) mode.

If PAH/base neutral were requested, Phoenix utilized a method that contained a shortened list, so some of the compounds in the narrative may be non-applicable. Initial Calibration Verification (CHEM04/SIM_0428):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM04/0505_02-SIM_0428):

100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 2-nitrophenol (.068)[0.1], Bis(2-chloroethyl)ether (.642)[0.7] The following compounds did not meet minimum response factors: None.

Printed Name Damien Drobinski

Position: Chemist **Date:** 5/5/2015

Instrument: Chem07 05/01/15-1 (BJ10076)

Initial Calibration Verification (CHEM07/SIM_0424):

98% of target compounds met criteria.

The following compounds had %RSDs >20%: 2,4,6-Trichlorophenol (22%)

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM07/0501_03-SIM_0424):

100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 2-nitrophenol (.056)[0.1]

The following compounds did not meet minimum response factors: None.

Printed Name Damien Drobinski

Position: Chemist **Date:** 5/1/2015

Instrument: Chem07 05/02/15-1 (BJ10079, BJ10080, BJ10081, BJ10082, BJ10083)

Initial Calibration Verification (CHEM07/SIM_0424):

98% of target compounds met criteria.

The following compounds had %RSDs >20%: 2,4,6-Trichlorophenol (22%)

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM07/0502_02-SIM_0424):

100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

May 07, 2015

SDG I.D.: GBJ10075

The following compounds did not meet recommended response factors: 2-nitrophenol (.056)[0.1] The following compounds did not meet minimum response factors: None.

Printed Name Damien Drobinski

Position: Chemist **Date:** 5/2/2015

QC Comments: QC Batch 306605 05/01/15 (BJ10079, BJ10080, BJ10081, BJ10082, BJ10083)

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

QC (Site Specific)

----- Sample No: BJ10079, QA/QC Batch: 306605 -----

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

QC (Batch Specific)

----- Sample No: BJ10073, QA/QC Batch: 306455 -----

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

VOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 306739 (Samples: BJ10075, BJ10076, BJ10077, BJ10078, BJ10079, BJ10080, BJ10081, BJ10082, BJ10083): -----

The LCS and/or the LCSD recovery is below the method criteria. All of the other QC is acceptable, therefore no significant bias is suspected. (Chloromethane, Dichlorodifluoromethane, Trichlorofluoromethane)

Instrument: Chem17 05/01/15-1 (BJ10075, BJ10076, BJ10077, BJ10078, BJ10079, BJ10080,

BJ10081, BJ10082, BJ10083)

Initial Calibration Verification (CHEM17/VOA 0430):

99% of target compounds met criteria.

The following compounds had %RSDs >20%: Bromoform (22%)

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM17/0501S04-VOA_0430):

100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the continuing calibration. The following

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

May 07, 2015

SDG I.D.: GBJ10075

compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

Printed Name Michael Hahn Position: Chemist 5/1/2015

QC Comments: QC Batch 306739 05/01/15 (BJ10075, BJ10076, BJ10077, BJ10078, BJ10079,

BJ10080, BJ10081, BJ10082, BJ10083)

A blank MS/MSD was analyzed with this batch.

QC (Batch Specific)

----- Sample No: BJ10073, QA/QC Batch: 306739 ------

All LCS recoveries were within 70 - 130 with the following exceptions: Chloromethane(65%), Dichlorodifluoromethane(61%), Trichlorofluoromethane(66%)

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Temperature Narration

The samples were received at 4C with cooling initiated. (Note acceptance criteria is above freezing up to 6°C)

AT46 Hartford Road, Manchester, CT 06040 56 Quarry Road, Trumbull, CT 06611

□ 1419 Richland Street, Columbia, SC 29201

01089
☐ 78 Interstate Drive, West Springfield, MA

 \square 317 Iron Horse Way, Suite 204, Providence, RI 02908 \square 80 Washington Street, Suite 301, Poughkeepsie, NY

4		
1		
		□ Other

days)

34191	
CHAIN-OF-CUSTODY RECORD	

CHAIN-OF-CUSIODY REC)Y KE	COKD	34191		□ 24-Hour* □ 48-Hour*	□ 72-Hour*		☐ Other (days) *Surcharge Applies
PROJECT NAME	P	PROJECT LOCATION	CATION		PROJECT NUMBER			_	TORY
East Hampton Bounfields	sam Gelds	W)	East Ham	tempton ct	20 11007 HAII	1.A11		Phoenix	X
REPORT TO: STEFANIE UNERSZCHAPEN	PRSZCHAPE	_		Analysis				Containers	ners
INVOICE TO:	-			Request					\rightarrow \right
P.O. No.:								1	The state of the s
Sampler's Signature:		Date:	4/29/15					Deth 0	1000,
Source Codes: MW=Monitoring Well PW=Potable Water SW=Surface Water ST=Stormwater	T=Treatment Facility W=Waste A=Air	S=Soil C=Concrete	B=Sediment	(03)		lover	\$ \$1.00 PS \$	1000 D 100 1000 D 100 100 D 100 1000 D 100 100 D 100 1000 D 100 1000 D 100 1000 D 100 1000 D 100 1000 D 100 10	005 C2 107 107 107 107 107 107 107 107 107 107
X=Other Try Blank				23/25	_	Sinch C	10 10 10 10 10 10 10 10 10 10 10 10 10 1	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1052 14
Item Transfer Check Sample No. 1 2 3 4	Sample Number	Source Code S	Date Time Sampled Sampled	301	TO T	2 3040 108 108 108 108 108 108 108 108 108 10	Soliter Con Water Con Washing Anniber A	100 10 10 10 10 10 10 10 10 10 10 10 10	Silver History And States of Annual Stat
10-62h0519111 ///	29-01	X	4/29/15 1200	1 w	-		7		
7/7		3		\ \ \	XL00]	0	133		HOLD METALS
	-o3	_	1335	\ \ \ \ \	[23]		~		
\ \ \ \ \ \	40-		1345	\ \ \	「つつ」	<u>-</u> حر	~		
7 /	205		82hl	111	100)	(-	× ·		
	90-		1530	\ \ \ \ \	8001	ρ	5 3		
1/1	-61		1614	\ \ \ \	\$\frac{1}{2}		%	_	
000	30-		1650	111	1008	5	3 3	-	
/ / / }	7	->	808/	<i>/ / /</i>	8001	3 1	33	•	>
		:							
Transfer Relinquished By	Ac	Accepted By	Date	Time	Charge Exceptions: □ CT Tax Exempt Dunlicates		AQA/QC □ OtherBlanks (Item Nos:		
	-			_	+	Ţ		`	

194/6 Reporting and Detection Limit Requirements: KRCP Deliverables

MCP CAM Cert.

SINPC, SWPC * Res VC

Additional Comments:

4/30/15/10:50

र्गामी Date

7